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ABSTRACT

The population stability index (PSI) is a widely used statistic that measures how
much a variable has shifted over time. A high PSI may alert the business to a change
in the characteristics of a population. This shift may require investigation and pos-
sibly a model update. PSI is commonly used among banks to measure the shift
between model development data and current data. Banks may face additional risks
if models are used without proper validation. The incorrect use of PSI may bring
unexpected risks for these institutions. However, there are not many studies about
the statistical properties of PSI. In practice, the following “rule of thumb” is used:
PSI < 0.10 means a “little change”, 0.10 < PSI < 0.25 means a “moderate change”
and 0.25 < PSImeans a “significant change, action required”. These benchmarks are
used without reference to statistical type I or type II error rates. This paper aims to
fill the gap by providing statistical properties of the PSI and some recommendations
on its use.

Keywords: population stability; divergence; model validation; model monitoring; model risk;
credit risk.

Corresponding author: B. Yurdakul Print ISSN 1753-9579 | Online ISSN 1753-9587
© 2021 Infopro Digital Risk (IP) Limited

89



90

B. Yurdakul and J. Naranjo

1 INTRODUCTION

The population stability index (PSI) is a measure of the population stability between
two population samples. Suppose we are interested in comparing the distribution of
credit scores for a base year, say 2017, and a target year, say 2019. Did the distri-
bution of credit scores remain the same or did it change? The PSI is calculated by
classifying the credit scores into B bins and comparing the multinomial frequen-
cies over the two years. For example, credit scores are classified into seven bins in
Table 1, with the highest scores in grade A and the lowest scores in grade G. The
table is based on data freely available from LendingClub (2018). The bin boundaries
were determined by LendingClub.

Let n be the sample size for the base population and m be the sample size for the
target population. Let p; = x;/n be the relative frequency of the ith grade for the
base year and §; = y;/m be the relative frequency of the ith grade for the target
year. The PSI is computed as

B
PSI =) "(pi —§:)(In p; —Ingy). (1.1)

i=1

In general, base year data refers to the development data for model validation, and
PSI gives a measure of the change in distribution between current and development
data. A high PSI indicates a large shift, which then makes the model questionable
for use. Even though the PSI is a widely used tool to measure population stability, its
distributional properties are not well known. In this paper, we discuss the statistical
properties of the PSI. Knowing these properties allows the derivation of, among other
things, benchmarks with known rates of false significance.

2 LITERATURE REVIEW

The PSI is discussed in several books on credit scoring or risk analysis (see, for exam-
ple, Anderson 2007; Baesens 2016; Lewis 1994; Siddiqi 2017). Recommendations
for industry best practice are made by Pruitt (2010), along with the implementation
of the PSI in SAS ENTERPRISE MINER. There is a patent issued for a machine
that calculates the PSI by Liu e al (2009). There are also papers and manuals by
governmental regulatory bodies that do not discuss the PSI directly (BGFRS-OCC
2011; Federal Deposit Insurance Corporation 2007; Office of the Comptroller of the
Currency 2016), but discuss the stability of population as an ongoing monitoring
requirement. Most of the literature talks about practical use, including rule-of-thumb
recommendations. Anderson (2007) points out that the rule of thumb is used as a
traffic light approach in the industry.
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TABLE 1 PSI calculation for distribution of credit scores.

Base Target
Grade (i)  (p;) (4i)  pPi—4i In(p;)—In(g;) Product

A 0.253 0.177 0.077 0.357 0.027
B 0.302 0.262 0.040 0.142 0.006
C 0.204 0.285 —0.081 —0.334 0.027
D 0.134 0.158 —0.024 —0.165 0.004
E 0.072 0.088 —0.016 —0.201 0.003
F 0.026  0.025 0.001 0.039 0.000
G 0.008 0.006 0.002 0.288 0.001
Total 1.000 1.000 PSI=0.068

The PSI can be written as some form of Kullback—Leibler (KL) divergence (Kull-
back 1978; Kullback and Leibler 1951). KL divergence is well studied and can be
found in Wu and Olson (2010), Lin (2017), Gottschalk (2016) and Thomas (2009).
Some of the books mentioned above make the connection between the PSI and KL
divergence. In particular, Anderson (2007) and Thomas et al (2017) acknowledge
that the PSI is a y2-based statistic and discuss the connection between the PSI and
KL divergence. However, the rule of thumb is still lacking discussion in the literature.

Let p(x) and g(x) be two distributions of a discrete random variable X. The x
divergence of ¢(x) from p(x) is

D) | po) = £ (10 20 ) = 23(> I e

We might think of p(x) as the true distribution and of ¢g(x) as the model distri-
bution so that Dgy represents some sort of loss due to using the wrong distribu-
tion. Even though Dy measures the divergence of g(x) from p(x), it is techni-
cally not a distance measure because the definition is not symmetric, ie, Dxy (g (x) |
p(x)) # Dxr(p(x) | g(x)). However, we can easily obtain a symmetric measure of
divergence by defining

D*(p.q) = DxiL(q | p) + Dx(p | )
_ , p( ) q(xi)
=Y p(x)n 205)

=3 plxyin ”) Z()l%i
=Z}mMrwummwun—mmm»

which brings us to the formula for the PSI.

x;) In
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Although KL divergence is not symmetric, the PSI is symmetric under the assump-
tion that cutoff values are predetermined. However, in practice that is not true, since
the cutoff points correspond to the percentiles of the base population that ultimately
determine the PSI. If the base and target populations switch roles, then this changes
the cutoff points and consequently the PSI. This is an additional layer of complexity
in the use of the PSI in practice.

Kullback (1978, Chapter 6) tackles the problem for multinomial distributions by
comparing cell percentages between two populations. Kullback defined J = (1/n +
1/ m)~! xPSI. His definition uses the notation J(1, 2), defined as the sum of so-called
information:

J(1,2) = I(1,2) + 1(2,1). (2.2)

Kullback called J the divergence between H; and H,, two simple statistical hypothe-
ses. Hy and Hj basically assume different population percentages. Since Kullback
considered only multinomial distribution, he did not have to consider cutoff values
for binning. However, per the current use of the PSI, the cell counts or percentages
are created from binning the underlying distribution in the development data. The
bins are basically dependent on the base population’s distribution.

3 STATISTICAL PROPERTIES OF THE POPULATION STABILITY
INDEX

Let X = (X1, X5,..., Xp) be a multinomial random variable with parameters n
and p, where p = (p1, p2,...,pp) and p; > Ofori = 1,..., B. In our motivating
example, n is the total number of base-year credit scores, and X; is the number that
falls in the ith grade. Similarly, let Y = (Y1, Y>,..., Yp) be a multinomial random
variable with parameters m and ¢ = (¢1,92,...,gp) withg; > Ofori = 1,..., B.
The following theorem provides a polynomial approximation of the PSI.

THEOREM 3.1  Let p; = X;/n, where (X1,..., Xp) is multinomial with param-
eters n and (p1, ..., pp). Let §; = Y;/m, where (Y1,...,YB) is multinomial with
parameters m and (41, . . .,qp). Then,

PSI = PSI* + 0,(n /%) + 0,(m™%/?), (3.1)
where

Pi—pi qi—qi  (pi—pi) N (G _C]i)zi|

B
PSI* = (ﬁ-—é-)[lnp-—lnq +
2 (Pi=d)| Inpi=tngit = gi 2p7 247

i=1
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PROOF By Taylor’s expansion,

5. — 1. A — 1.)2
n(p) = In(py) + D=2 PP
Di 2p;

where R, consists of higher-order terms. Now /n(p; — p;) is asymptotically nor-
mal, so (p; — p;) is Op(n_l/z). Thus, (p; — p;i)> and the higher-order terms are
0, (n~3/2). By similarly expanding In(g;) and substituting it into (In p; — Ing;), the
result follows. O

The polynomial approximation simplifies considerably when the two multinomi-
als have equal probability vectors.

THEOREM 3.2  If p; = qi, i = 1,..., B, and the assumptions of Theorem 3.1
hold, then

& (i — i) L o
PSI = -2 4 0,(n7 ") + 0,(m ). (3.2)
i=1 !

PROOF First, note that In p; —Ing; = 0. Second,

pi—pi  qi—4qi _ pi—4qi

Pi qi Pi
Finally,
o (Pi=p)? . (Pi — pi)? -
(Pi — Gi)———— = [(pi — pi) — i — )] ——5— =0p(n" "),
2p; 2p;
since (p; — pi) and (§; — i) are 0,(1) and (p; — p;i)? is Op(n~"). O

Let
B o s
PSI** — Z (Pi —qi) ‘
i=1 pi
We will derive the properties of this quadratic approximation. First, we write it in
matrix form, ie,

> (i — i)’
psr* = S LTI gy, (3.3)
i-1 P
where T _
— 0 0
hr—a ’;1 ! .
P -
v=|"7 7| ad a=| P2
ﬁB _QB 1
0 0 .. —
L PB -
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THEOREM 3.3 Under the assumptions of Theorem 3.2, (1/n +1/m)~'PSI** has
an approximate x* distribution with B — 1 degrees of freedom.

PROOF Note that

1 1\ *% 7 g*
—+—) PSI"™" =V'A4"V,
n m

1 1\!
A*=(—+—) A.
n m

It is known from multinomial theory that (py, ...

where

, pB) is asymptotically multivariate

normal, and hence V' is approximately normal for large n and m (see, for example,

Agresti 2007). To show that V' A*V has a chi-square distribution, a sufficient con-

dition is that A* X is idempotent, where X' is the variance—covariance matrix of V

(see, for example, Stapleton 1995). By the independence of p; and §;, we have

(I-pi)  a(l—gqi)
n + m

var(pi — ;) =
1 1
= pi(l _Pi)(— + —),
n m
since p; = ¢;. Also,
cov(pi — i, pj — 4q;) = cov(pi, pj) — cov(pi.q;) — cov(gi. pj) + cov(§i. q)).
which equals

;@&_0+0+_¢a:_mm(_+_)
n m n m

(For details on the covariance between multinomial frequencies, see, for example,
Cochran (1977).) Then,

p— 1 -—
— 0 .- 0 lr -
P pi(l—=p1)  —pip2 —P1Pn
1
0 — - 0 —p2p1 - p2(l—p2) —p2pB
A*Y = P2 :
0 0 L —PnP1 —PnP2 p(1—pB) |
L PB -

Journal of Risk Model Validation www.risk.net/journals



Statistical properties of the population stability index

FIGURE 1 Histogram of 10 000 simulated PSI values and overlay of chi-square density.
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which can be shown to be idempotent (Yurdakul 2018). Finally, the degrees of
freedom are given by

l—p1 —p> -+ —pB
-» l=p2 - —pp

tr(A*X) =tr i ] ) ] =B —1.
—D1 —p2 - l—ppB

O

Theorems 3.1-3.3 (from Yurdakul (2018)) suggest that PSI has a distribution
that is approximated by (1/n + 1/m) times a y? random variable with B — 1
degrees of freedom. We ran simulations to confirm this. For example, we used the
rmultinom () function in R to generate multinomial counts of n = 400 obser-
vations falling into B = 10 categories with equal probabilities p; = 0.10 for
i = 1,...,10. The second sample was generated with m = 400 and similar prob-
abilities g; = 0.10 for all i. The PSI value (1.1) for comparing the two samples
was calculated. Figure 1 shows the histogram of 10000 simulated values of PSI. The
density of (1/n + 1/m) 3 is overlaid for comparison.

4 BENCHMARKS FOR THE POPULATION STABILITY INDEX

The PSI is used to measure how much a distribution has shifted between two popula-
tions or over time. A typical rule of thumb (Lewis 1994) for the extent to which
a distribution has shifted is the following: PSI < 0.10 means a “little change”,
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TABLE 2 PSI benchmarks for B = 10 and o = 0.05.

m

n 100 200 400 600 800 1000

100 0.338 0.254 0.211 0.197 0.190 0.186
200 0.254 0.169 0.127 0.113 0.106 0.102
400 0.211 0.127 0.085 0.070 0.063 0.059
600 0.197 0.113 0.070 0.056 0.049 0.045
800 0.190 0.106 0.063 0.049 0.042 0.038
1000 0.186 0.102 0.059 0.045 0.038 0.034

0.10 < PSI < 0.25 means a “moderate change”, and 0.25 < PSI means a “signifi-
cant change”. However, the statistical properties of these benchmarks are unknown.
For example, how frequently will the PSI exceed 0.10 when in truth there has been no
population shift? The asymptotic distribution of the PSI allows us to use benchmarks
that control the type I error rate. Consider formally testing

H()Z Di*x = (i i=1,...,B
versus

H; : pi # q; for atleastonei.

A test with type I error rate o would reject Hy and declare a change if

1 1
PSI > (— + —)xi B—1- 4.1)
n m ’

where )(i’ p— is the upper « percentile of the x? distribution with B — 1 degrees of
freedom. Table 2 provides values of the benchmark (4.1) for B = 10 and o = 0.05.
The benchmarks change considerably with n and m.

When B = 10, the rule-of-thumb PSI > 0.25 seems reasonable for sample sizes
n and m between 100 and 200, but it is too conservative for larger sample sizes. The
benchmark also changes with the number of bins B. Table 3 provides the benchmark
values (4.1) for B = 20 and o = 0.05. Additional tables can be found in Yurdakul
(2018).

Exactly how liberal or conservative are the 0.10 and 0.25 rules of thumb? We
conducted a simulation study to assess rates of rejection under both the null and
alternative hypotheses. We generated n observations from the N(i1; = 0,02 = 64)
and let (p1,..., p1o) be the observed proportions that fall into the B = 10 popula-

tion deciles. A second sample of m observations was generated from N(u,,02 =

Journal of Risk Model Validation www.risk.net/journals
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TABLE 3 PSI benchmarks for B = 20 and « = 0.05.

m

n 100 200 400 600 800 1000

100 0.603 0.452 0.377 0.352 0.339 0.332
200 0.452 0.301 0.226 0.201 0.188 0.181
400 0.377 0.226 0.151 0.126 0.113 0.106
600 0.352 0.201 0.126 0.100 0.088 0.080
800 0.339 0.188 0.113 0.088 0.075 0.068
1000 0.332 0.181 0.106 0.080 0.068 0.060

TABLE 4 Power comparison of PSI > 0.10,0.25 and (1/n + 1/m)Xg_05 when B = 10

and the mean of target population has shifted by 0, % and % standard deviations.

Benchmark R = p1 k2 =p1+(c/d) k2 =p1+(/2)
—— — — —N

m n 010 025 x2 010 025 x2 010 025 x2

100 100 0.849 0.233 0.076 0.943 0.459 0.218 0.997 0.883 0.711
100 200 0.691 0.074 0.069 0.890 0.270 0.258 0.996 0.835 0.826
100 400 0.560 0.029 0.066 0.834 0.176 0.295 0.997 0.787 0.887
200 200 0.369 0.004 0.057 0.775 0.085 0.360 0.997 0.769 0.954
200 400 0.160 0.000 0.060 0.673 0.028 0.473 0.997 0.720 0.990
400 400 0.020 0.000 0.051 0.513 0.004 0.671 0.999 0.669 0.999

64) and we let (1, ...,q10) be the observed proportions falling into the deciles of
N(0,0% = 64). We used three values — u» = 0,2, 4 — representing mean shifts of
0, % and % standard deviations, respectively. The percentage of times that PSI was
rejected (out of 10000 runs) is presented in Table 4.

Under the null case where uy = w1, the type I error rate for PSI > 0.10 is too
large, except when both sample sizes exceed 400. In contrast, the type I error rate
for PSI > 0.25 is too small when both sample sizes exceed 200, so the test is too
conservative. The chi-square benchmark maintains a reasonable type I error, close to
a = 0.05.

Under the alternative cases where the two population means are not the same, the
power of the PSI test based on the chi-square benchmark increases with the sample
size. However, the tests PSI > 0.10 and PSI > 0.25 have powers that actually
decrease with sample size (or type II error rates that increase with sample size). This
counterintuitive behavior can be explained by Theorem 3.3, which states that PSI has
expected value (1/n+1/m)(B —1) and variance 2(1/n +1/m)?(B —1). Both mean
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TABLE 5 x2- and normal-based benchmarks for m = n = 100 and « = 0.05.

B

5 10 15 20

x%-based 0.19 0.34 047 0.60
z-based 0.17 0.32 0450 0.58

and variance reduce to zero as n and m increase, which means that PSI converges to
a point mass at zero.

Since the chi-square distribution is approximately normal for moderately large
degrees of freedom, the percentile Xﬁ, g—p in (4.1) may be approximated by (B —
1) + zq /2(B — 1). This results in

1 1
PSI > (— + —) (B—=14z4+/2(B —1)). 4.2)
n o m
Table 5 shows the values of chi-square and normal-based PSI benchmarks in (4.1)
and (4.2).

5 CONCLUSION

The PSI is used to measure the divergence of frequency distributions between two
samples or in time. In practice, it is used to measure the divergence between a devel-
opment data set of a particular model and the current population the model is used
on. It is used as a validation tool to show the applicability of the model to the current
population. In its current use in industry, the PSI is compared with the rule-of-thumb
benchmarks that have no known properties. In this paper, we provide guidance by
deriving the asymptotic distribution of the PSI. Users may calculate benchmarks
depending on the desired level of significance «. Besides «, the benchmarks depend
on the number of bins B, and the base and target sample sizes n and m, respec-
tively. Instead of the fixed rules of thumb 0.10 and 0.25, we suggest the following
benchmarks for PSI, after deciding on a desired significance level a:

PSI > y2 X l+i (5.1)
Xa,B—l n m ’ .

PSI > (% + %)(B — 1+ z42(B = 1)). (5.2)

The practitioner may choose ¢ = 0.10, 0.05, 0.01 or 0.005, depending on the
acceptable level of risk the institution or practitioner assumes.
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