1.1 Terminology

- A random experiment is a repeatable process that results in a random outcome.
- The collection of all possible outcomes is called the sample space, and is typically denoted \mathcal{C}.

Example 1.1.2 Roll one red and one white die. This is a random experiment with sample space

$$
\mathcal{C}=\{(1,1),(1,2), \ldots,(1,6),(2,1),(2,2), \ldots,(2,6), \ldots,(6,1),(6,2), \ldots,(6,6)\}
$$

or more conveniently

Example 1.1.3 Roll one red and one white die and let B denote the event that the two dice sum to 7 . Then B is an event: $B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$. Note that any event B is a subset of \mathcal{C}.

The relative frequency by which an event B occurs is called its probability.
Example 1.1.3b Roll one red and one white die and take the sum of the two dice. This is a random experiment with sample space

$$
\mathcal{C}=\{2,3,4, \ldots, 11,12\}
$$

1.2.1 Review of Set Theory

Definitions:

1. The complement of an event A, denoted A^{c}, is the set of all elements in \mathcal{C} which are not in A.
2. If each element in A is also in B then A is a subset of B. This is denoted $A \subset B$.
3. The union of A and B is the set of all elements that are in A or in B or in both. This is denoted $A \cup B$, and represents the event that " A or B occurs".
4. The intersection of A and B is the set of all elements that are in both A and B. This is denoted $A \cap B$, and represents the event that " A and B occur".
5. DeMorgan's Laws

$$
\begin{aligned}
& (A \cap B)^{c}=A^{c} \cup B^{c} \\
& (A \cup B)^{c}=A^{c} \cap B^{c}
\end{aligned}
$$

Example 1.2.1 (p. 5)

1.3 Probability

Definition 1.3.1. A probability function P satisfies the following:

1. $P(A) \geq 0$ for all events $A \subset \mathcal{C}$.
2. $P(\mathcal{C})=1$
3. If A_{n} is a mutually exclusive sequence of events (i.e. $A_{m} \cap A_{n}=\phi$ for all $m \neq n$), then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

Theorems (p.13)

1. $P(A)=1-P\left(A^{c}\right)$
2. $P(\phi)=0$
3. If $A \subset B$, then $P(A) \leq P(B)$
4. $0 \leq P(A) \leq 1$
5. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Definition 1.3.2. Let $\mathcal{C}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a finite sample space. If x_{1}, \ldots, x_{m} are equally likely, then

1. $P\left(x_{i}\right)=1 / m$ for all $i=1,2, \ldots, m$ and
2. $P(A)=\frac{\#(A)}{m}$ for all events A.
where $\#(A)$ denotes the number of elements in A.

1.3.1 Counting Rules

Three counting rules

1. Multiplication Rule

If there are m ways to choose the first element of an ordered pair and there are n ways to choose the second element, then there are $m n$ possible ordered pairs.
(Extension: If there are m_{1} ways to choose the first element, \ldots, and m_{k} ways to choose the k th element, then there are $\left(m_{1}\right)\left(m_{2}\right) \cdots\left(m_{k}\right)$ possible k-tuples.

Examples

(a) How many license plates can we make consisting of one letter of the alphabet followed by a digit between 0 and 9 ?
Ans: $(26)(10)=260$.
(b) How many license plates can we make consisting of three letters of the alphabet followed by four digits between 0 and 9 ?
Ans: $(26)(26)(26)(10)(10)(10)(10)=4,569,760,000$
2. Permutations

Let A be a set with n elements. How many k-tuples can be made from elements of A ? Ans: $n \cdot n \cdots n=n^{k}$. How many k-tuples can be made if each component is distinct(i.e. no repeats)? Ans: $n(n-1) \cdots(n-(k-1))$. We call such k-tuple a permutation. The number of distinct permutations of k objects from n is

$$
\begin{equation*}
P_{k}^{n}=n(n-1) \cdots(n-(k-1))=\frac{n!}{(n-k)!} \tag{1.3.5}
\end{equation*}
$$

Example 1.3.3 (Birthday Problem) There are 10 people in a room. Assuming that birthdays are equally likely to fall on any of the 365 days of the year, what is the probability that at least 2 people have the same birthday?
Ans: Represent each set of birthdays by a 10 -tuple of integers between 1 and 365 . There are a total of $(365)^{10}$ possible outcomes. Let A be the subset where no two integers match. There are $P_{10}^{365}=365(364) \cdots(356)$ of these. Then

$$
P[\text { Matching birthdays }]=1-P[\text { No match }]=1-\frac{P_{10}^{365}}{(365)^{10}}
$$

```
# COMPUTING IN R
bday=function(n){bday=1; nm1=n-1
+ for(j in 1:nm1){bday=bday*((365-j)/365)}
+ bday<-1-bday
+ return(bday)}
> bday(10)
[1] 0.1169482
> for(i in 10:25){a[i]<-bday(i)}
> a[10:25]
    [1] 0.1169482 0.1411414 0.1670248 0.1944103 0.2231025
    [6] 0.2529013 0.2836040}00.3150077 0.3469114 0.3791185
[11] 0.4114384 0.4436883 0.4756953 0.5072972 0.5383443
[16] 0.5686997
```

3. Combinations

A poker hand consists of 5 randomly drawn cards drawn without repetition from a regular deck of 52 playing cards. How many different poker hands are there? This is called a combination of 5 taken from 52. The difference between a permutation and combination is that permutations are ordered k-tuples, i.e. the order matters. Pretending for now that order matters, there are $P_{5}^{52} 5$-tuples of cards from 52. However, each unordered poker hand corresponds to 5 ! ordered 5 -tuples. So

$$
P_{5}^{52}=5!C_{5}^{52}
$$

where C_{5}^{52} is the number of unordered sets of 5 cards from 52 . In general, if we draw k objects from n, the number of combinations is

$$
\begin{equation*}
C_{k}^{n} \equiv\binom{n}{k}=\frac{P_{k}^{n}}{k!}=\frac{n!}{k!(n-k)!} \tag{1.3.6}
\end{equation*}
$$

Example 1.3.4 (Poker hands)

1. Given a 5 -card poker hand, what is the probability of a flush?

$$
P \text { [flush] }=\frac{\binom{4}{1}\binom{13}{5}}{\binom{52}{5}}
$$

2. What is the probability of getting three-of-a-kind?

$$
P[\text { three of a kind }]=\frac{\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}^{2}}{\binom{52}{5}}
$$

