Interval Estimation 2

Day 10 (2/6/20)
Example 4.2.3 (Large sample confidence interval for p). Suppose $n=40$ graduating students are asked if they plan to go to graduate school. If 8 out of 40 said yes, then $\hat{p}=8 / 40=.20$, or 20%. Question: What is the expected size of the error of estimation? ($\mathrm{SE}=$? , $95 \% \mathrm{CI}=$?)

Math trick: If we can represent \hat{p} as a sample mean, then all results already known about the sample mean apply. For example, consider the Bernoulli sample: S, F, F, S, F

$$
\begin{array}{ccc}
\mathrm{S} & \rightarrow & 1 \\
\mathrm{~F} & \rightarrow & 0 \\
\mathrm{~F} & \rightarrow & 0 \\
\mathrm{~S} & \rightarrow & 1 \\
\mathrm{~F} & \rightarrow & 0 \\
\hline \hat{p}=2 / 5=.40 & & \bar{X}=2 / 5=.40
\end{array}
$$

"The sample proportion of successes (\hat{p}) is a sample mean (\bar{X}) of 1 s and 0 s", i.e. $\hat{p}=\frac{\sum X_{i}}{n}$ or $\sum X_{i}=n \hat{p}$. Furthermore, the sample variance is

$$
\begin{aligned}
S^{2} & =\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}=\frac{\sum\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}\right)}{n-1}=\frac{\sum X_{i}^{2}-2 \bar{X} \sum X_{i}+n \bar{X}^{2}}{n-1} \\
& =\frac{\sum X_{i}-2 n \bar{X}^{2}+n \bar{X}^{2}}{n-1}=\frac{\sum X_{i}-n \bar{X}^{2}}{n-1} \\
& =\frac{n \hat{p}-n \hat{p}^{2}}{n-1}=\frac{n}{n-1} \hat{p}(1-\hat{p}) \\
& \doteq \hat{p}(1-\hat{p})
\end{aligned}
$$

From Example 4.2.2, a large sample confidence interval for μ is

$$
\left(\bar{X}-z_{\alpha / 2} \frac{S}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{S}{\sqrt{n}}\right)
$$

so equivalently, a large sample confidence interval for the population proportion p is

$$
\left(\hat{p}-z_{\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p}+z_{\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right)
$$

In particular, a 95% confidence interval for p is

$$
\left(\hat{p}-1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p}+1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right)
$$

The term $\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$ is called the standard error of \hat{p}.
Example 4.2.3 (con't): Recall that $\hat{p}=8 / 40=.20$. A 95% confidence interval for p is

$$
.20 \pm 1.96 \frac{\sqrt{(.20)(.80)}}{\sqrt{40}}
$$

4.2.1 Confidence Intervals for Difference in Means

Let $X_{1}, \ldots, X_{n_{1}}$ be a random sample from $f_{1}(\cdot)$ with mean μ_{1} and variance σ_{1}^{2} and $Y_{1}, \ldots, Y_{n_{2}}$ be a random sample from $f_{2}(\cdot)$ with mean μ_{2} and variance σ_{2}^{2}. In addition, assume that the X sample and Y sample are independent. Let the difference between means $\Delta=\mu_{1}-\mu_{2}$ be estimated by

$$
\hat{\Delta}=\bar{X}-\bar{Y}
$$

It can be shown that

$$
\begin{aligned}
\operatorname{Var}(\hat{\Delta}) & =\operatorname{Var}(\bar{X}-\bar{Y})=\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{Y}) \\
& =\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} \doteq \frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}
\end{aligned}
$$

so that $\operatorname{SE}(\hat{\Delta})=\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}$. Using the pivot method

$$
\begin{aligned}
.95 & \doteq P\left[-1.96 \leq \frac{\hat{\Delta}-\Delta}{\mathrm{SE}} \leq 1.96\right] \\
& \vdots \\
& =P[\hat{\Delta}-1.96(\mathrm{SE}) \leq \Delta \leq \hat{\Delta}+1.96(\mathrm{SE})] \\
& \equiv P[L \leq \Delta \leq U]
\end{aligned}
$$

so that $\hat{\Delta} \pm 1.96(\mathrm{SE})$ is an approximate 95% confidence interval. In general, a ($1-\alpha) 100 \%$ confidence interval for $\Delta=\mu_{1}-\mu_{2}$ is given by

$$
\left((\bar{X}-\bar{Y})-z_{\alpha / 2} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}},(\bar{X}-\bar{Y})+z_{\alpha / 2} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}\right)
$$

Comment: The confidence interval works reasonably well when either of the following hold

1. Both distributions $f_{1}(\cdot)$ and $f_{2}(\cdot)$ are normal
2. Both sample sizes n_{1} and n_{2} are reasonably large so that \bar{X} and \bar{Y} are approximately normal by CLT effect

An exact confidence interval for $\mu_{1}-\mu_{2}$
Suppose that the following assumptions hold

1. $X_{1}, \ldots, X_{n_{1}} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$
2. $\sigma_{1}^{2}=\sigma_{2}^{2} \equiv \sigma^{2}$
3. The X sample and Y sample are independent

Then

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim N(0,1)
$$

Let

$$
S_{p}^{2}=\frac{\sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}}{n_{1}+n_{2}-2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

be a pooled estimator of the common variance σ^{2}. It can be shown that

$$
\frac{\left(n_{1}+n_{2}-2\right) S_{p}^{2}}{\sigma^{2}} \sim \chi_{n_{1}+n_{2}-2}^{2}
$$

Then

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}}{\sqrt{\frac{\left(n_{1}+n_{2}-2\right) S_{p}^{2}}{\sigma^{2}} /\left(n_{1}+n_{2}-2\right)}} \stackrel{\mathcal{D}}{=} \frac{N(0,1)}{\sqrt{\chi_{n_{1}+n_{2}-2}^{2} /\left(n_{1}+n_{2}-2\right)}}
$$

Student named the right side a t distribution (with $n_{1}+n_{2}-2$ degrees of freedom).

$$
\begin{aligned}
.95 & =P\left[-t_{.025, n_{1}+n_{2}-2} \leq \frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \leq t_{.025, n_{1}+n_{2}-2}\right] \\
& \vdots \\
& =P\left[(\bar{X}-\bar{Y})-t_{.025, n_{1}+n_{2}-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq(\bar{X}-\bar{Y})+t_{.025, n_{1}+n_{2}-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right] \\
& \equiv P\left[L \leq \mu_{1}-\mu_{2} \leq U\right]
\end{aligned}
$$

so that $(\bar{X}-\bar{Y}) \pm t_{.025, n_{1}+n_{2}-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$ is an exact 95% confidence interval for $\mu_{1}-\mu_{2}$. In general, a $(1-\alpha) 100 \%$ exact confidence interval for $\mu_{1}-\mu_{2}$ is given by

$$
\bar{X}-\bar{Y} \pm t_{\alpha / 2, n_{1}+n_{2}-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

Example 4.2.4 The baseball data contains heights of $n_{1}=33$ hitters and $n_{2}=26$ pitchers. The difference between pitcher and hitter heights are estimated as

$$
\hat{\Delta}=\bar{X}-\bar{Y}=75.19-72.67=2.53 \text { inches }
$$

```
> load(url('http://www.stat.wmich.edu/~mckean/hmchomepage/Data/bb.rda'))
> head(bb)
    hand height weight hitind hitpitind average
1
2 llllllll
```

3	1	77	219	2	0	3.040
4	0	73	185	1	1	0.271
5	0	69	160	3	1	0.242
6	0	73	222	1	0	3.920

```
> x<-bb$height[bb$hitpitind==0]
> x
```


7676
> $\mathrm{y}<-\mathrm{bb} \$$ height[bb\$hitpitind==1]
$>y$

$\begin{array}{lllllllll}73 & 73 & 72 & 71 & 71 & 74 & 71 & 71 & 70\end{array}$
$>$ cbind(mean(x), mean(y), mean(x)-mean(y))
[,1] [,2] [,3]
[1,] 75.19231 72.66667 2.525641
$>\mathrm{s} 1<-\mathrm{sd}(\mathrm{x})$
$>s 2<-s d(y)$
$>\mathrm{sp}<-\operatorname{sqrt}\left(\left((26-1) * s 1^{\wedge} 2+(33-1) * s 2^{\wedge} 2\right) /(26+33-2)\right)$
> cbind(s1, s2, sp)
s1 s2 sp
[1,] 1.959984 2.217356 2.108345
> SE <-sp*sqrt(1/26 + 1/33)
$>\mathrm{SE}$
[1] 0.5528713
$>$ qt (. $975,26+33-2)$
[1] 2.002465
$>\mathrm{L}<-2.525641-2.002465 * .5528713$
$>\mathrm{U}<-2.525641+2.002465 * .5528713$
$>$ cbind (L,U)
L U
[1,] 1.418536 3.632746
>
> \# Using t.test
> t.test(x, y, var.equal=T, conf.level=.95)
Two Sample t-test
data: x and y
$\mathrm{t}=4.5682, \mathrm{df}=57, \mathrm{p}$-value $=2.682 \mathrm{e}-05$
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.4185353 .632747
sample estimates:
mean of x mean of y
$75.19231 \quad 72.66667$

