Hypothesis Testing Day 11 (2/11/20)

4.5 Introduction to Hypothesis Testing

Let X_1, X_2, \ldots, X_n be a random sample from a population with density $f(x; \theta)$, for θ in the parameter space Ω . Suppose we partition Ω into ω_0 and ω_1 , i.e. $\omega_0 \cap \omega_1 = \phi$ and $\omega_0 \cup \omega_1 = \Omega$. Consider the two hypotheses

$$H_0: \theta \in \omega_0$$
 versus $H_1: \theta \in \omega_1$

called the *null* and *alternative* hypotheses, respectively. Let \mathcal{D} be the domain of (X_1, X_2, \ldots, X_n) . Let C be a subset of \mathcal{D} . Consider the rejection rule

Reject
$$H_0$$
 if $(x_1, x_2, \ldots, x_n) \in C$

and do not reject H_0 otherwise. Then C is called the *critical region* or *rejection region* of the test. Since a test of hypothesis is completely determined by its critical region, we will treat the two terms as synonymous.

Example: Suppose we want to test $H_0: \mu \leq 0$ versus $H_1: \mu > 0$. The following statements are equivalent:

- Reject H_0 if $\overline{x} > 2\frac{S}{\sqrt{n}}$
- Critical region: $\overline{x} \in \left(2\frac{S}{\sqrt{n}}, \infty\right)$

Table 1: Type I and Type II errors

	True State of Nature	
Decision	H_0 is true	H_0 is false
Reject H_0	Type I error	Correct decision
Accept H_0	Correct decision	Type II error

Comments:

- If the critical region C is the empty set ϕ , then the test never rejects and P[Type I error] = 0.
- If critical region C is the whole domain \mathcal{D} , then test always rejects and P[Type II error] = 0.

Definition: A critical region C is of size α if

$$\alpha = \max_{\theta \in \omega_0} P_{\theta}[(X_1, X_2, \dots, X_n) \in C]$$

$$(4.5.4)$$

Definition: The **power function** of a test with critical region C is

$$\gamma_C(\theta) = P_\theta[(X_1, X_2, \dots, X_n) \in C], \text{ for } \theta \in \omega_1$$
(4.5.5)

i.e. the probability that the test correctly rejects H_0 when the true value of θ is in H_1 . If two critical regions C_1 and C_2 have the same size, we say that C_1 is better than C_2 if $\gamma_1(\theta) \ge \gamma_2(\theta)$ for all $\theta \in \omega_1$.

Example 4.5.2 (Binomial proportion) Let X_1, X_2, \ldots, X_{20} be a random sample of size n = 20 from a Bernoulli distribution with probability of success p. The total number of successes $S = \sum_{i=1}^{20} X_i$ has a binomial distribution $S \sim \text{Bin}(n = 20, p)$. Now consider testing

$$H_0: p = .70$$
 versus $H_1: p < .70$

Since fewer successes provide evidence toward H_1 , it makes sense that the critical region should be of the form $S \leq k$, for k some integer less than 14. For a given k, the size of the test is

$$\alpha = P_{p=.70} \left[S \le k \right]$$

The following table gives α for different values of k, using the R function pbinom(k, 20, p=.70).

Table 2: Values of α for various rejection regions

k	$P[S \le k]$
7	0.0013
8	0.0051
9	0.0171
10	0.0480
11	0.1133
12	0.2277
13	0.3920
14	0.5836

Now consider two possible tests: $S \leq 11$ or $S \leq 12$. The following R output calculates $P(S \leq 11)$ and $P(S \leq 11)$ for different values of p.

Comments:

1. • $S \leq 11$ has size $\alpha_1 = P_{.70} [S \leq 11] = .1133$

- $S \le 12$ has size $\alpha_2 = P_{.70} [S \le 12] = .2277$
- 2. Test 1 has smaller probability of wrongly rejecting H_0 . The tradeoff is that Test 1 also has smaller probability of correctly rejecting H_0 . For example

$$P_{.65}[S \le 11] = .2376$$
 and $P_{.65}[S \le 12] = .3990$
 $P_{.60}[S \le 11] = .4044$ and $P_{.60}[S \le 12] = .5841$

The two power functions are plotted below. The R code that generated the plot is provided.

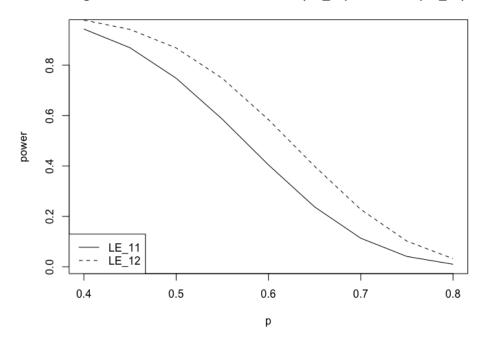


Figure 4.5.1: Power curves for test 1 (LE_11) and test 2 (LE_12)

- > #### R code > p<-seq(.4,.8,by=.05) > power1<-pbinom(11,20,p) > power2<-pbinom(12,20,p) > plot(power1~p,type="l", lty=1,ylab="power", main="Figure 4.5.1: Power curves for test 1 (LE_11) and test 2 (LE_12)") > lines(power2~p,type="l", lty=2) > legend("bottomleft", legend = c("LE_11", "LE_12"),lty=1:2)
- 3. The null hypothesis $H_0: p = .70$ is an example of a *simple* null hypothesis because it contains only one point. This simplifies calculation of size of the test, for example

$$\alpha = P_{p=.70}[S \le 11] = .1133$$

Often, the null hypothesis is written as a *composite* $H_0: p \ge .70$ versus $H_1: p < .70$ in which case definition (4.5.4) applies

$$\alpha = \max_{p>.70} P_p[S \le 11] = P_{p=.70}[S \le 11] = .1133$$

since the power curves in Figure 4.5.1 are monotone decreasing which means the maximum over $\omega_0 = [.70, 1]$ occurs at the boundary p = .70.

- 4. Other names for the size of a test
 - (a) level of significance
 - (b) maximum power over the null region
 - (c) maximum P[Type I error]
 - (d) Type I error rate
 - (e) false rejection rate

Example 4.5.3 (Large sample test for the mean) Suppose X_1, X_2, \ldots, X_{25} is a random sample from a population with mean μ and variance $\sigma^2 = 100$. To test $H_0: \mu = 40.0$ versus $H_1: \mu > 40.0$ consider the rejection region

$$\frac{\overline{X} - 40.0}{S/\sqrt{25}} \ge 1.645$$
 (*)

Since the LHS is approximately N(0,1) under the null, the test (*) has size

$$P_{\mu=40}\left(\frac{\overline{X}-40.0}{S/\sqrt{25}} \ge 1.645\right) = 1 - \Phi(1.645) = .05$$

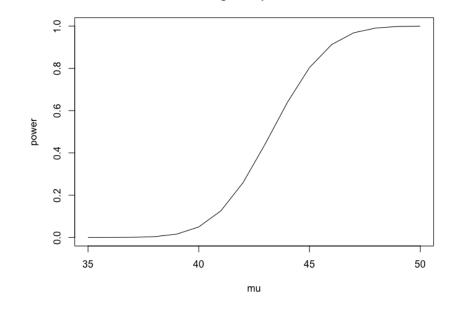
Under alternative, the LHS of (*) is not N(0,1) because the mean is not 0. The power function is

$$\begin{split} \gamma(\mu) &= P_{\mu} \left(\frac{\overline{X} - 40.0}{S/\sqrt{25}} \ge 1.645 \right) = P_{\mu} \left(\overline{X} \ge 40.0 + 1.645 \ S/\sqrt{25} \right) \\ &= P_{\mu} \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{25}} \ge \frac{40.0 - \mu + 1.645 \ S/\sqrt{25}}{10/\sqrt{25}} \right) \\ &\doteq 1 - \Phi \left(\frac{40.0 - \mu}{10/\sqrt{25}} + 1.645 \right), \text{ by the CLT and since } S/\sigma \doteq 1 \end{split}$$

The following table and plot gives the power function for several values of μ .

μ	$\gamma(\mu)$
37	0.0008308
38	0.0040863
39	0.0159823
40	0.0500000
41	0.1261349
42	0.2595110
43	0.4424132
44	0.6387600
45	0.8037649
46	0.9123145
47	0.9682123

Power of large sample test for mean



The test has size $\alpha = .05$, and the power increases as μ gets deeper into the alternative region. In general, let X_1, \ldots, X_n be a random sample from a population density f with mean μ and variance σ^2 . For testing

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu > \mu_0$

the size α test

$$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \ge z_\alpha \tag{4.5.11}$$

has power function

$$\gamma(\mu) = P_{\mu} \left(\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \ge z_{\alpha} \right) = P_{\mu} \left(\overline{X} \ge \mu_0 + z_{\alpha} S/\sqrt{n} \right)$$
$$= P_{\mu} \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \ge \frac{\mu_0 - \mu}{\sigma/\sqrt{n}} + z_{\alpha} \frac{S/\sqrt{n}}{\sigma/\sqrt{n}} \right)$$
$$\doteq 1 - \Phi \left(\frac{\mu_0 - \mu}{\sigma/\sqrt{n}} + z_{\alpha} \right)$$