Hypothesis Testing 3
Day 13 (2/18/20)

4.2 Con’t: The Behrens-Fisher problem (when o? # o2)
Suppose that the following assumptions hold
1. X1,..., Xn, ~ N(u1,0?) and Y3,...,Y,, ~ N(ug,03), where 03 # o3.
2. The X sample and Y sample are independent

Welch (1947) showed that -
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has an approximate t-distribution with degrees of freedom close to
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Then using the pivot method again,
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so that a 95% confidence interval for p; — s is given by
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This is called the Welch-Satterthwaite (or simply Welch) confidence interval for the difference
between two means. This is the default method for the ¢.test() function in R.
Example(Exercise 4.6.6: AZT data)

> load(url(’http://www.stat.wmich.edu/ mckean/hmchomepage/Data/aztdoses.rda’))
> head(aztdoses)

azt dose
1 284 300
2 279 300
3 289 300



292 300

287 300

295 300

attach(aztdoses)

x1<-azt [dose==300]

x2<-azt [dose==600]

x1

[1] 284 279 289 292 287 295 285 279 306 298
> x2

[1] 298 307 297 279 291 335 299 300 306 291
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> t.test(x1,x2)
Welch Two Sample t-test

data: x1 and x2
t = -2.034, df = 14.509, p-value = 0.06065
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-22.3557409  0.5557409
sample estimates:
mean of x mean of y
289.4 300.3

> t.test(x1,x2,var.equal=T)
Two Sample t-test

data: x1 and x2
t = -2.034, df = 18, p-value = 0.05696
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-22.1584072  0.3584072
sample estimates:
mean of x mean of y
289.4 300.3

In general, the Welch-Satterthwaite (1 — a)100% confidence interval for p; — g is
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Comments:

1. Welch-t requires normality, but relaxes the equal variance assumption required by pooled-t



2. If 07 = 02, Welch-t and pooled-t have approximately the same performance. If 02 # o3,
Welch-t is better because pooled-t confidence interval may not have the desired coverage
probability

3. Simulations suggest that conducting the Welch-t all the time is better than the two-stage test

e Conduct a test for equal variance
e Conduct pooled-t or Welch-t depending on outcome of test for equal variance

This is because the test for equal variance is not sensitive enough, and the pooled-t ends up
getting used even when variances are not equal

4. When normality is violated and sample sizes are small, then use nonparametric methods like
the rank sum test (from Stat 5660)

5 Dependent Means and Proportions

5.1 Paired data

Let (X1,Y1),...(Xy,Y,) be a random sample of paired observations, where (Xi,...,X,,) is a ran-
dom sample from a distribution fi(-) with mean p; and (Y7,...,Y},) is a random sample from
a distribution fy(-) with mean ps. Then the differences (D1,...,D,) = Y1 — X3,...,Y, — X,
constitute a random sample from a distribution g(-) with mean ug — p; (call this pg).

To test Hy : 1 = po vs Hy @ p; # ue, we instead test

Ho:pg=0versus Hy : ug #0

which is a one-sample problem on the differences D1, ..., D,. Consequently, we can construct a
95% confidence interval for g as follows:
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A test with level of significance a = .05 will reject Hg : g = 0 if
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5.2 Paired binary data
Example: BMR handout

Week 2

N Ab

Week 0O N |5 4
Ab|1 0

In general, we express the data as



N Ab
Pre N |a b
Ab | ¢ d

McNemar’s test: To test
Hy : p1 = py versus Hy : p1 # p2

where p; and py are the marginal probabilities (of ”Normal”, say), reject Hy if

(b—c)?
b+c

M =

2
> X05,1

Example: (BMR handout con’t.) Since M = % = % = 1.8 which is not greater than X,205,1 =
3.84, then we do not reject the null hypothesis. The percentage of normal (or abnormal) is not

significantly different between Week 0 and Week 2.

5.3 Dependent proportions

When two proportions p; and po are two categories of a multinomial, then the two proportions are
not independent. In fact, the sum p; + p2 cannot exceed 1.0, so when one exceeds .5, then the other
cannot. In this case, the estimator of p; — po = p1 — P is the same as before, but the variance
formula is different.

p1(l—p1) | p2(l —pa) | 2p1pe

Var(p1 — p2) = - + - + o

Example: Suppose that n = 50 people were asked whether they are optimistic about the economy.
The data is shown below. Are there significant more ’yes’ than 'no’?

Yes No Not sure

22 15 13
Solution:
22 15
P — Py = — — — =.44—.30=.14
Pr=Pr= 507 50 30
R R (.44)(.56)  (.30)(.70)  (.44)(.30)
_ — =.011
Var(py — p2) 50 + 50 + 50 0118

The standard error of p; — py = .14 is
SE(p, — p2) = V0118 = .11
The 95% confidence interval of the difference is .14 + 1.96(.11) or

(—.08,.25)



Appendix: R simulation of Welch versus pooled-t

ni<-35 # Sample size for x

n2<-25 # Sample size for y

sigmal<-50 # Population sd for x

sigma2<-50 # Population sd for y

mul<-40 # Population mean for x

mu2<-0 # Population mean for y
nsim<-10000 # Number of trials
pvali<-numeric(nsim) # Storage for p-value of pooled-t
pval2<-numeric(nsim) # Storage for p-value of Welch-t

for(i in 1:nsim){

xsim<-rnorm(nl,mul,sigmal) # Generate x-data

ysim<-rnorm(n2,mu2,sigma2) # Generate y-data
pvall[i]<-t.test(xsim,ysim,alternative="two.sided",var.equal=TRUE)$p.value
pval2[i]l<-t.test(xsim,ysim,alternative="two.sided",var.equal=FALSE)$p.value
}

cbind (mean(pvall<.05) ,mean(pval2<.05))

# Write a function

welch_sim<-function(nsim=10000, n1=30, n2=30, mul=0, mu2=0, sigmal=1,sigma2=1){
pvall<-numeric(nsim) # Storage for p-value of pooled-t
pval2<-numeric(nsim) # Storage for p-value of Welch-t

for(i in 1l:nsim){

xsim<-rnorm(nl,mul,sigmal) # Generate x-data

ysim<-rnorm(n2,mu2,sigma?) # Generate y-data
pvall[i]l<-t.test(xsim,ysim,alternative="two.sided",var.equal=TRUE)$p.value
pval2[i]<-t.test(xsim,ysim,alternative="two.sided",var.equal=FALSE)$p.value

} # End of for() loop
return(c(mean(pvall<.05) ,mean(pval2<.05)))
} # End of function()

# Call the function
welch_sim(10000,35,25,0,0,50,50)
welch_sim(10000,35,25,10,0,50,50)
welch_sim(10000,35,25,20,0,50,50)
welch_sim(10000,35,25,30,0,50,50)
welch_sim(10000,35,25,40,0,50,50)

# Use unequal variance
welch_sim(10000,35,25,mu1=0,0,20,50)
welch_sim(10000,35,25,mu1=0,0,50,20)

# Use for() loop to automate
muvec<-c(-40,-35,-30,-25,-20,-15,-10,-5,0,5,10,15,20,25,30,35,40)
outmat<-matrix(rep(0,2xlength(muvec)), ncol=2)

for(j in 1:length(muvec)){



outmat[j,]<-welch_sim(10000,35,25,muvec[j],0,20,50)
}
outmat
colnames (outmat)<-c("pooled","welch")
cbind (muvec,outmat)
powerl<-outmat[,1]
power2<-outmat[,2]
plot(powerl™muvec,ylim=c(0,1),type="1",x1lab="mul-mu2",ylab="Power",

main="Power curves")

lines(power2~muvec,col="red",type="1",1ty=2)
legend("topleft",legend=c("pooled","welch"),lty=c(1,2))
abline(h=.05,col="blue",1ty=6)
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