Random Variables

Day 3 (1/14/20)

1.5 Random variables

Example 1.5.1 Roll a pair of dice. Let X be the sum of the two dice. Then X has the probability mass function

x	2	3	4	5	6	7	8	9	10	11	12
$p(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

This is an example of a discrete random variable because the support of X (i.e. the range of possible values) is a countable set. The pmf allows the calculation of probabilities, for example

$$
P(\text { craps })=P(2 \text { or } 3 \text { or } 12)=p(2)+p(3)+p(12)=\frac{1}{36}+\frac{2}{36}+\frac{1}{36}=\frac{4}{36}
$$

A discrete random variable may have an infinite number of points in its support. For example, roll a die repeatedly and let X be the roll number on which the first ' 6 ' occurs. Then X has pmf

x	1	2	3	4	5	\ldots
$p(x)$	$\frac{1}{6}$	$\left(\frac{5}{6}\right) \frac{1}{6}$	$\left(\frac{5}{6}\right)^{2} \frac{1}{6}$	$\left(\frac{5}{6}\right)^{3} \frac{1}{6}$	$\left(\frac{5}{6}\right)^{4} \frac{1}{6}$	\cdots

or more compactly

$$
p(x)=\left(\frac{5}{6}\right)^{x-1} \frac{1}{6} \text { for } x=1,2,3,4, \ldots
$$

A continuous random variable has a support that is a continuous interval. For example, let X be the time in seconds between calls to the customer support center of an online retailer. Then X takes values on the interval $(0, \infty)$. Instead of a table like (1), probabilities for continuous random variable are represented by an integrable probability density function $f(\cdot)$ such that

$$
\begin{equation*}
P[a<X<b]=\int_{a}^{b} f(x) d x \tag{2}
\end{equation*}
$$

For example, suppose that

$$
f(x)= \begin{cases}\frac{1}{4} e^{-x / 4} & 0<x<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

What percentage of between-call times exceed 4 seconds?

$$
P[X>4]=\int_{4}^{\infty} \frac{1}{4} e^{-x / 4} d x=-\left.e^{-x / 4}\right|_{4} ^{\infty}=-\left(0-e^{-1}\right)=e^{-1}=.3679
$$

Because the pdf satisfies (2), then individual points have 0 probability when a random variable is continuous, for example

$$
P[x=4]=\int_{4}^{4} \frac{1}{4} e^{-x / 4} d x=0
$$

so that (2) may be written as

$$
P[a<X<b]=P[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

For either discrete or continuous random variables, the cumulative distribution function is

$$
F(x)=P[X \leq x]
$$

Example 1.5.3 (discrete)
Example 1.5.4 (continuous)

1.7.2 Transformations

Suppose we know the distribution of X. Can we find the distribution of some transformation $Y=g(X)$?

Case 1: Discrete

For discrete X, the problem is not hard. For example, let X be the outcome of a die roll so that X has pmf

x	1	2	3	4	5	6
$p(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

What is the pmf of $Y=(X-3)^{2}$? If $x=1$ then $y=(1-3)^{2}=4$. Continuing with other values

y	4	1	0	1	4	9
$p(y)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

so that Y has pmf

y	0	1	4	9
$p(y)$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{6}$

Case 2: Continuous

Let X have pdf

$$
f(x)= \begin{cases}\frac{1}{4} e^{-x / 4} & 0<x<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

What is the pdf, say $g(\cdot)$, of $Y=X^{2}$? It is not easy to find $g(\cdot)$ directly, because the pdf is not a probability. So we look for g in two steps.

- Step 1: Calculate the cdf of Y

$$
G(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=\int_{0}^{\sqrt{y}} f(x) d x
$$

- Step 2: Calculate the pdf $g(y)$ from $G(y)$. The main tool here is the Fundamental Theorem of Calculus

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(t) d t \text { implies } \frac{d}{d x} F(x)=f(x) \tag{1.7.2}
\end{equation*}
$$

Solution: For $y>0$,

$$
\begin{aligned}
G(y) & =P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=\int_{0}^{\sqrt{y}} f(x) d x \\
& =\int_{0}^{\sqrt{y}} \frac{1}{4} e^{-x / 4} d x=-\left.e^{-x / 4}\right|_{0} ^{\sqrt{y}}=1-e^{-\sqrt{y} / 4}
\end{aligned}
$$

Then

$$
\begin{aligned}
g(y) & =\frac{d}{d y} G(y)=\frac{d}{d y}\left(1-e^{-\sqrt{y} / 4}\right) \\
& =-e^{-\sqrt{y} / 4} \frac{d}{d y}(-\sqrt{y} / 4) \\
& =\frac{1}{8} y^{-1 / 2} e^{-\sqrt{y} / 4}
\end{aligned}
$$

so that $Y=X^{2}$ has pdf

$$
g(y)= \begin{cases}\frac{1}{8} y^{-1 / 2} e^{-\sqrt{y} / 4} & 0<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

1.8 Expectation

Definition 1.8.1. The expected value or mean of a random variable X is

$$
E(X)= \begin{cases}\sum_{x} x p(x) & \text { if discrete } \\ \int_{x} x f(x) d x & \text { if continuous }\end{cases}
$$

Example 1.8.1
Example 1.8.2
Example 1.8.3
Theorem 1.8.1. The expected value of a function $g(X)$ is

$$
E(X)= \begin{cases}\sum_{x} g(x) p(x) & \text { if discrete } \\ \int_{x} g(x) f(x) d x & \text { if continuous }\end{cases}
$$

Example 1.8.4
Example 1.8.5
Example 1.8.6
Example 1.8.7
Example 1.8.8

