The Mean and Variance

Day 4 (1/16/20)

1.9 Some Special Expectations

Definition 1.9.1. The mean of a random variable X is $\mu=E(X)$.
Definition 1.9.2. The variance of a random variable X is $\sigma^{2}=E(X-\mu)^{2}$.
Note that

$$
\begin{aligned}
\sigma^{2} & =E(X-\mu)^{2}=E\left(X^{2}-2 \mu X+\mu^{2}\right)=E\left(X^{2}\right)-E(2 \mu X)+E\left(\mu^{2}\right) \\
& =E\left(X^{2}\right)-2 \mu^{2}+\mu^{2}=E\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

which is the easier to compute. The square root of the variance is called the standard deviation.

$$
\sigma=\sqrt{E(X-\mu)^{2}}
$$

Theorem 1.9.1. Let a and b be constants. Then

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Proof.

$$
\operatorname{Var}(a X+b)=E[(a X+b)-(a \mu+b)]^{2}=E[a(X-\mu)]^{2}=a^{2} E(X-\mu)^{2}
$$

Ex. Let X have pmf| x | 2 | 4 | 5 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p(x)$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |.

1. Find the mean, variance and standard deviation.

Solution:

$$
\begin{aligned}
\mu & =E(X)=\sum x p(x) \\
& =2\left(\frac{1}{5}\right)+4\left(\frac{1}{5}\right)+5\left(\frac{1}{5}\right)+6\left(\frac{1}{5}\right)+8\left(\frac{1}{5}\right)=5.0 \\
\sigma^{2} & =E(X-\mu)^{2} \\
& =(2-5)^{2}\left(\frac{1}{5}\right)+(4-5)^{2}\left(\frac{1}{5}\right)+(5-5)^{2}\left(\frac{1}{5}\right)+(6-5)^{2}\left(\frac{1}{5}\right)+(8-5)^{2}\left(\frac{1}{5}\right) \\
& =(9+1+0+1+9)\left(\frac{1}{5}\right)=4.0 \\
\sigma & =\sqrt{4.0}=2.0
\end{aligned}
$$

The standard deviation is (an approximation of) "average size of deviation from the mean".
2. Let $Y=3 X+5$. Find the mean, variance and standard deviation.
(a) Solution 1: (Find pmf of $Y=3 X+5$)

Y has pmf | y | 11 | 17 | 20 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p(y)$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |.

$\mu_{Y}=E(Y)=\sum y p(y)$
$=11\left(\frac{1}{5}\right)+17\left(\frac{1}{5}\right)+20\left(\frac{1}{5}\right)+23\left(\frac{1}{5}\right)+29\left(\frac{1}{5}\right)=20.0$
$\sigma_{Y}^{2}=E\left(Y-\mu_{Y}\right)^{2}$
$=(11-20)^{2}\left(\frac{1}{5}\right)+(17-20)^{2}\left(\frac{1}{5}\right)+(20-20)^{2}\left(\frac{1}{5}\right)+(23-20)^{2}\left(\frac{1}{5}\right)+(29-20)^{2}\left(\frac{1}{5}\right)$
$=(81+9+0+9+81)\left(\frac{1}{5}\right)=36.0$
$\sigma=\sqrt{36.0}=6.0$
(b) Solution 2: $\operatorname{Var}(3 X+5)=(3)^{2} \operatorname{Var}(X)=(3)^{2} 4.0=6.0$

Example 1.9.1
Example 1.9.2
Example 1.9.3 (Mean may not exist)
Definition 1.9.3. The moment generating function (mgf) of a random variable X is $M(t)=$ $E\left(e^{t X}\right)$, for some interval $(-h, h)$ over which the mgf exists.

Example 1.9.4

Theorem 1.9.2. The mgf of X uniquely determines the distribution of X, i.e. if the mgf of X is the same as the mgf of a uniform distribution, then X has a uniform distribution.

Since $M(t)=\int e^{t x} f(x) d x$ then

$$
M^{\prime}(t)=\frac{d}{d t} M(t)=\frac{d}{d t} \int e^{t x} f(x) d x=\int \frac{d}{d t} e^{t x} f(x) d x=\int x e^{t x} f(x) d x
$$

Evaluating at $t=0$,

$$
M^{\prime}(0)=\int x f(x) d x=E(X)
$$

Furthermore,

$$
\begin{gathered}
M^{\prime \prime}(t)=\frac{d}{d t} \int x e^{t x} f(x) d x=\int x^{2} e^{t x} f(x) d x \\
M^{\prime \prime}(0)=E\left(X^{2}\right)
\end{gathered}
$$

In general, for any positive integer m,

$$
M^{(m)}(0)=E\left(X^{m}\right)
$$

Example 1.9.5 (mgf may not exist)
Example 1.9.7 (mgf of Normal distribution)

