
Special Discrete Distributions
Day 5 (1/21/20)

3.1 Binomial

• A Bernoulli experiment is any random experiment which results in one of two outcomes
(0 or 1, success or failure, heads or tails, male or female, event or no-event).

• Bernoulli trials is a series of independent Bernoulli experiments

• A Bernoulli random variable with parameter p has pmf
x 0 1

p(x) 1− p p
, or

p(x) = px(1− p)1−x, x = 0, 1 (3.1.1)

• Mean, variance, and standard deviation of Bernoulli(p)

1. µ = E(X) = (0)(1− p) + (1)(p) = p

2. σ2 = E(X − p)2 = (0− p)2(1− p) + (1− p)2p = p2 − p3 + p− 2p2 + p3 = p(1− p)
3. σ =

√
p(1− p)

• A binomial random variable is the number of successes in n Bernoulli trials.

Example 3.1.1 Suppose we roll a die n = 10 times, and let Y be the number of sixes. What
is, for example, P (Y = 2)?

Solution: The event Y = 2 is the union of the ordered 10-tuples

SSFFFFFFFF ∪ SFSFFFFFFF ∪ · · · ∪ FFFFFFFFSS
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• A random variable Y has a binomial distribution with parameters n and p if it has pmf

P (Y = j) = p(j) =

(
n

j

)
pj(1− p)n−j , j = 0, 1, 2, . . . , n

Recall the binomial expansion

(a+ b)n = an + nan−1b+

(
n

2

)
an−2b2 + · · ·+ bn =

n∑
j=0

(
n

j

)
ajbn−j

Then
n∑
j=0

P (Y = j) =

n∑
j=0

(
n

j

)
pj(1− p)n−j = [p+ (1− p)]n = 1
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• To find the mean and variance of binomial(n, p),

M(t) = E
(
etY
)

=
∑n

j=0 e
tj
(
n
j

)
pj(1− p)n−j =

∑n
j=0

(
n
j

) (
pet
)j

(1− p)n−j =
[
pet + (1− p)

]n
.

M ′(t) = n
[
pet + (1− p)

]n−1
pet implies

E(X) = M ′(0) = np

M ′′(t) = n
[
pet + (1− p)

]n−1
pet + n(n− 1)

[
pet + (1− p)

]n−2 (
pet
)2

implies

Var(X) = M ′′(0)− [M ′(0)]2 = np+ n(n− 1)p2 − (np)2 = np(1− p)

• Binomial in R

dbinom, pbinom, qbinom, rbinom

3.1.3 Hypergeometric Distribution

• Suppose we have a box of N items, of which D are defective and N −D are nondefective. Let
X be the number of defective items in a sample of size n drawn without replacement. Then
X is a hypergeometric random variable with parameters N , D, and n.

• The pmf of X is

P (X = j) = p(j) =

(
D
j

)(
N−D
n−j

)(
N
n

) , j = 0, 1, 2, . . . , n

Example: Draw a 5-card poker hand. What is the probability exactly 2 cards are spades?

Solution: Let X be the number of spades. Then X is hypergeometric(52, 13, 5).

P (X = 2) =

(
13
2

)(
39
3

)(
52
5

)
• Mean and variance

E(X) = n
D

N

Var(X) = n
D

N

N −D
N

N − n
N − 1

• Hypergeometric in R (dhyper, phyper, qhyper, rhyper)

3.2 Poisson

• A random variable X has a Poisson distribution with parameter λ id X has pmf

p(j) =
e−λλj

j!
, j = 0, 1, 2, . . .

Since 1 + z + z2

2! + z3

3! + z4

4! + · · · = ez, then

∞∑
j=0

p(j) =

∞∑
j=0

e−λλj

j!
= e−λ

∞∑
j=0

λj

j!
= e−λeλ = 1.0
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• Mean and variance of Poisson(λ)

M(t) = E(etX) =
∑∞

j=0 e
tj e−λλj

j! = e−λ
∑∞

j=0
(λet)j

j! = e−λeλe
t

= eλ(e
t−1)

M ′(t) = eλ(e
t−1)λet implies

E(X) = M ′(0) = λ

M ′′(t) = eλ(e
t−1)λet + eλ(e

t−1)(λet)2

Var(X) = M ′′(0)− [M ′(0)]2 = (λ+ λ2)− λ2 = λ

• Poisson in R

dpois, ppois, qpois, rpois

• Relationship between Poisson and Binomial

Example: Let Y be the number of accidents in a busy intersection during the next 100 days
(where the average number given past data is µ = 2.5 accidents every 100 days).

1. Case 1: Binomial with n = 100 days

Let n = 100 days. Then p = .025 is the probability of one accident each day, so that
µ = np = (100)(.025) = 2.5. The binomial probabilities are

j 0 1 2 3 4 5 6 7 . . .

p(j) .0795 .2039 .2588 .2168 .1348 .0664 .0269 .0093
(1)

2. Case 2: Binomial with n = 2400 hours

If we change the interval-lengths from days to hours, then n = 2400 hours and p =
0.00104 is the probability of one accident each hour, so that µ = np = (2400)(.00104) =
2.5. The new binomial probabilities are

j 0 1 2 3 4 5 6 7 . . .

p(j) .0820 .2052 .2566 .2139 .1337 .0668 .0278 .0099
(2)

3. Case 3: Poisson

Cases 1 and 2 illustrate an arbitrariness in our choice of unit interval (e.g. day or hour
or minute, etc). As unit intervals get shorter, then n gets larger, and p shrinks because
we should maintain µ = np = 2.5. Equations (1) and (2) suggest the probability values
may converge if we set p = µ

n and let n→∞.

In general, for µ > 0 and any nonnegative integer j, it can be shown that

lim
n→∞

(
n

j

)(µ
n

)j (
1− µ

n

)n−j
=
e−µµj

j!

In other words, Bin(n,p) probabilities for large n and small p are approximated by

Poisson(λ) where λ = np. Here are Poisson probabilities p(j) = e−2.52.5j

j! , j = 0, 1, 2, 3, . . .

j 0 1 2 3 4 5 6 7 . . .

p(j) .0821 .2052 .2565 .2138 .1336 .0668 .0278 .0099
(3)
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