Special Discrete Distributions

Day 5 (1/21/20)

3.1 Binomial

- A Bernoulli experiment is any random experiment which results in one of two outcomes (0 or 1 , success or failure, heads or tails, male or female, event or no-event).
- Bernoulli trials is a series of independent Bernoulli experiments
- A Bernoulli random variable with parameter p has pmf | x | $0 \quad 1$ |
| :---: | :---: | :---: |
| $p(x)$ | $1-p \quad p$ | , or

$$
\begin{equation*}
p(x)=p^{x}(1-p)^{1-x}, x=0,1 \tag{3.1.1}
\end{equation*}
$$

- Mean, variance, and standard deviation of $\operatorname{Bernoulli}(p)$

1. $\mu=E(X)=(0)(1-p)+(1)(p)=p$
2. $\sigma^{2}=E(X-p)^{2}=(0-p)^{2}(1-p)+(1-p)^{2} p=p^{2}-p^{3}+p-2 p^{2}+p^{3}=p(1-p)$
3. $\sigma=\sqrt{p(1-p)}$

- A binomial random variable is the number of successes in n Bernoulli trials.

Example 3.1.1 Suppose we roll a die $n=10$ times, and let Y be the number of sixes. What is, for example, $P(Y=2)$?

Solution: The event $Y=2$ is the union of the ordered 10 -tuples

$$
\begin{aligned}
& S S F F F F F F F F \cup S F S F F F F F F F \cup \cdots \cup F F F F F F F F S S \\
& \begin{aligned}
P(Y=2) & =\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8}+\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8}+\cdots+\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8} \\
& =\binom{10}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8}
\end{aligned}
\end{aligned}
$$

- A random variable Y has a binomial distribution with parameters n and p if it has pmf

$$
P(Y=j)=p(j)=\binom{n}{j} p^{j}(1-p)^{n-j}, j=0,1,2, \ldots, n
$$

Recall the binomial expansion

$$
(a+b)^{n}=a^{n}+n a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+b^{n}=\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j}
$$

Then

$$
\sum_{j=0}^{n} P(Y=j)=\sum_{j=0}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}=[p+(1-p)]^{n}=1
$$

- To find the mean and variance of $\operatorname{binomial}(n, p)$,
$M(t)=E\left(e^{t Y}\right)=\sum_{j=0}^{n} e^{t j}\binom{n}{j} p^{j}(1-p)^{n-j}=\sum_{j=0}^{n}\binom{n}{j}\left(p e^{t}\right)^{j}(1-p)^{n-j}=\left[p e^{t}+(1-p)\right]^{n}$.
$M^{\prime}(t)=n\left[p e^{t}+(1-p)\right]^{n-1} p e^{t}$ implies

$$
\begin{gathered}
E(X)=M^{\prime}(0)=n p \\
M^{\prime \prime}(t)=n\left[p e^{t}+(1-p)\right]^{n-1} p e^{t}+n(n-1)\left[p e^{t}+(1-p)\right]^{n-2}\left(p e^{t}\right)^{2} \text { implies } \\
\operatorname{Var}(X)=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}=n p+n(n-1) p^{2}-(n p)^{2}=n p(1-p)
\end{gathered}
$$

- Binomial in R
dbinom, pbinom, qbinom, rbinom

3.1.3 Hypergeometric Distribution

- Suppose we have a box of N items, of which D are defective and $N-D$ are nondefective. Let X be the number of defective items in a sample of size n drawn without replacement. Then X is a hypergeometric random variable with parameters N, D, and n.
- The pmf of X is

$$
P(X=j)=p(j)=\frac{\binom{D}{j}\binom{N-D}{n-j}}{\binom{N}{n}}, j=0,1,2, \ldots, n
$$

Example: Draw a 5 -card poker hand. What is the probability exactly 2 cards are spades? Solution: Let X be the number of spades. Then X is hypergeometric $(52,13,5)$.

$$
P(X=2)=\frac{\binom{13}{2}\binom{39}{3}}{\binom{52}{5}}
$$

- Mean and variance

$$
\begin{gathered}
E(X)=n \frac{D}{N} \\
\operatorname{Var}(X)=n \frac{D}{N} \frac{N-D}{N} \frac{N-n}{N-1}
\end{gathered}
$$

- Hypergeometric in R (dhyper, phyper, qhyper, rhyper)

3.2 Poisson

- A random variable X has a Poisson distribution with parameter λ id X has pmf

$$
p(j)=\frac{e^{-\lambda} \lambda^{j}}{j!}, j=0,1,2, \ldots
$$

Since $1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\cdots=e^{z}$, then

$$
\sum_{j=0}^{\infty} p(j)=\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^{j}}{j!}=e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}=e^{-\lambda} e^{\lambda}=1.0
$$

- Mean and variance of Poisson (λ)
$M(t)=E\left(e^{t X}\right)=\sum_{j=0}^{\infty} e^{t j} \frac{e^{-\lambda} \lambda^{j}}{j!}=e^{-\lambda} \sum_{j=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{j}}{j!}=e^{-\lambda} e^{\lambda e^{t}}=e^{\lambda\left(e^{t}-1\right)}$
$M^{\prime}(t)=e^{\lambda\left(e^{t}-1\right)} \lambda e^{t}$ implies

$$
E(X)=M^{\prime}(0)=\lambda
$$

$M^{\prime \prime}(t)=e^{\lambda\left(e^{t}-1\right)} \lambda e^{t}+e^{\lambda\left(e^{t}-1\right)}\left(\lambda e^{t}\right)^{2}$

$$
\operatorname{Var}(X)=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}=\left(\lambda+\lambda^{2}\right)-\lambda^{2}=\lambda
$$

- Poisson in R
dpois, ppois, qpois, rpois
- Relationship between Poisson and Binomial

Example: Let Y be the number of accidents in a busy intersection during the next 100 days (where the average number given past data is $\mu=2.5$ accidents every 100 days).

1. Case 1: Binomial with $n=100$ days

Let $n=100$ days. Then $p=.025$ is the probability of one accident each day, so that $\mu=n p=(100)(.025)=2.5$. The binomial probabilities are

j	0	1	2	3	4	5	6	7	\ldots
$p(j)$.0795	.2039	.2588	.2168	.1348	.0664	.0269	.0093	

2. Case 2: Binomial with $n=2400$ hours

If we change the interval-lengths from days to hours, then $n=2400$ hours and $p=$ 0.00104 is the probability of one accident each hour, so that $\mu=n p=(2400)(.00104)=$ 2.5. The new binomial probabilities are

j	0	1	2	3	4	5	6	7	\ldots
$p(j)$.0820	.2052	.2566	.2139	.1337	.0668	.0278	.0099	

3. Case 3: Poisson

Cases 1 and 2 illustrate an arbitrariness in our choice of unit interval (e.g. day or hour or minute, etc). As unit intervals get shorter, then n gets larger, and p shrinks because we should maintain $\mu=n p=2.5$. Equations (1) and (2) suggest the probability values may converge if we set $p=\frac{\mu}{n}$ and let $n \rightarrow \infty$.
In general, for $\mu>0$ and any nonnegative integer j, it can be shown that

$$
\lim _{n \rightarrow \infty}\binom{n}{j}\left(\frac{\mu}{n}\right)^{j}\left(1-\frac{\mu}{n}\right)^{n-j}=\frac{e^{-\mu} \mu^{j}}{j!}
$$

In other words, $\operatorname{Bin}(n, p)$ probabilities for large n and small p are approximated by $\operatorname{Poisson}(\lambda)$ where $\lambda=n p$. Here are Poisson probabilities $p(j)=\frac{e^{-2.5} 2.5^{j}}{j!}, j=0,1,2,3, \ldots$

j	0	1	2	3	4	5	6	7	\ldots
$p(j)$.0821	.2052	.2565	.2138	.1336	.0668	.0278	.0099	

