Special Continuous Distributions
Day 6 (1/23/20)

3.3 Gamma and Chi-square

e A continuous random variable X has a Gamma distribution with parameters o > 0 and
B > 0if its pdf is

— e B <z <0 (3.3.2)
where I'(«) is the gamma function
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If «v is a positive integer greater than 1, then I'(a) = (a — 1)

e Let w=x/f so that dw = %dm. Then
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The following identity is useful to remembr
/ 2 te™®/Bdy = D(a)B* (3.3.2%)
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e Moment generating function
M) = E etX _ / etxixa—le—x/ﬁd:v — / xa—le—z(l—ﬁt)/ﬁdx
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e Mean and variance (p.175)

e I'(a, /) in R
dgamma(x, shape=a, scale=b), pgamma, qgamma, rgamma

(See Figure 3.3.1 for shapes of density)

Theorem 3.3.1. Let X1, Xo,..., X, be independent I'(c;, 8) random variables. Then

ZXi has distribution I’ (Z «;, 6)
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Proof. Let Y =>"" | X;. Then Y has mgf
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3.3.1 Special Cases
1. Gamma(a = 1, ) is called Exponential(3)
f(z) = ;e_x/ﬁ, 0<z<oo

E(X)=p
Var(X) = 52
Remark 3.3.1 (Poisson Processes) Recall that number of accidents in an intersection for
a 100-day interval is modeled by a Poisson process with mean p = 2.5 (or similarly, by a

Poisson process with rate of A\ = .025 per day). Let W be the waiting time (in days) until
the next event.

) 67.25(_25)0 o5
P(W > 10 days) = P(0 events in 10 days) = ———— = ¢

0!
since the expected number of events in 10 days is A(10) = (.025)(10) = .25. In general,
—02%(,025¢)"
P(W >t days) = P(0 events in t days) = e (025 = ¢ 025
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Fy(t)=P(W <t)=1—P(W >t) =1—¢ 02
fw () =.025e70% 0 < t < 00
so that waiting time W has distribution Exp(s = % = 40). The expected waiting time is

B = 40 days.
2. Gamma(a = r/2, 3 = 2) is called x? with r degrees of freedom.
1
_ r/2—1_—x/2
f(z) F(r/2)2a$ e < <o (3.3.7)
EX)=r
Var(X) = 2r

x? in R: dchisq, pchisq, qchisq, rchisq
Corollary 3.3.1. Let X1, Xo,..., X, be independent x> random variables with r; degrees of
freedom, respectively. Then

n n

ZXi has a x* distribution with Zri degrees of freedom

i=1 =1

Example Using R to confirm Theorem 3.3.1



3.4 Normal Distribution

Definition 3.4.1. We say that a continuous random variable has a normal distribution with
parameters p and o if it has pdf

1 _@w?
f(z) = e 202 , —00 < x < 00 (3.4.6)

Properties:
e Notation: X ~ N(u,0?)
2t2

e Moment generating function: M (t) = ehitse

e Mean and variance:
E(X)=M'0)=p
Var(X) = M"(0) — [M'(0)]* = o?
e dnorm, pnorm, gnorm, rnorm
Location-Scale Transformation: If X ~ N(u,o?) then

1. aX +b~ N(au+b,a%0?)
2. X~ N(0,1)

(Empirical Rule) Let X ~ N(u,0?). Then

k ‘ P(|X — p| < ko)
1 .6827
2 .9545
3 9973

Theorem 3.4.1. If X ~ N(u,0?) then (X — pu)?/o? ~ x*(1)
Theorem 3.4.2. (Sum of independent normals)
1. If X1, Xo,...,X,, are independent N(u;,0?), then Y X; ~ N (Z?:l iy D iy 01-2)
Proof. > X; has mgf
M(t) — E(etZXi) _ E(etXletX2 . etX") — E(etXl)E(eth) . E(etXn)
= (eMt+ et (eHatt 3oty L (einttaont?)
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2. If X1, Xo,..., X, are independent N(u,0?), then

X =(1/n)Y_ Xi ~ N(u,0°/n)

i=1

Proof. By the sum of normals, > X; ~ N(nu,nc?). Then by scale transformation,
(1/n) Sy Xi ~ N(jt,0%/n). 0



