Point Estimation 2

Day 8 (1/30/20)

4.1.1 Point Estimators Con't.

Note: The MLE works for more than one parameter: $\theta=\left[\theta_{1}, \theta_{2}\right]$
Example 4.1.3 On page 229, we are given $n-24$ sulfur dioxide measurements from a Bavarian forest. Assuming the population may be modeled by $N\left(\mu, \sigma^{2}\right)$, find the MLE of $\left(\mu, \sigma^{2}\right)$.

Solution: Let $X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$. Let $\theta=\left[\theta_{1}, \theta_{2}\right]=\left[\mu, \sigma^{2}\right]$. Then

$$
\begin{gathered}
f\left(x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
L(\theta)=\prod f\left(x_{i} ; \theta\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}} \\
l(\theta)=\ln L(\theta)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}
\end{gathered}
$$

Taking partial derivatives with respect to μ and σ^{2}, respectively

1. $\frac{\partial}{\partial \mu} l(\theta)=-\frac{1}{2 \sigma^{2}} \sum 2\left(x_{i}-\mu\right)(-1)$
2. $\frac{\partial}{\partial \sigma^{2}} l(\theta)=-\frac{n}{2 \sigma^{2}}+\frac{1}{2\left(\sigma^{2}\right)^{2}} \sum\left(x_{i}-\mu\right)^{2}$

Setting both equations to 0 and solving for $\hat{\mu}$ and $\hat{\sigma}^{2}$,

$$
\begin{gathered}
\sum\left(x_{i}-\hat{\mu}\right)=0 \Rightarrow \sum x_{i}=n \hat{\mu} \Rightarrow \hat{\mu}=\bar{x} \\
\frac{n}{\hat{\sigma}^{2}}=\frac{1}{\left(\hat{\sigma}^{2}\right)^{2}} \sum\left(x_{i}-\bar{x}\right)^{2} \Rightarrow \hat{\sigma}^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}
\end{gathered}
$$

so the MLE is

$$
\hat{\theta}=\left[\begin{array}{c}
\hat{\theta_{1}} \\
\hat{\theta_{2}}
\end{array}\right]=\left[\begin{array}{c}
\hat{\mu} \\
\hat{\sigma}^{2}
\end{array}\right]=\left[\begin{array}{c}
\bar{x} \\
\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}
\end{array}\right]=\left[\begin{array}{l}
53.91667 \\
97.25139
\end{array}\right]
$$

```
> # CALCULATIONS IN R
> sulfurdioxide<-c(33.4,38.6,41.7,43.9,44.4,45.3,46.1,47.6,50.0,52.4,52.7,
    53.9,54.3,55.1,56.4,56.5,60.7,61.8,62.2,63.4,65.5,66.6,70.0,71.5)
> mean(sulfurdioxide)
[1] 53.91667
> (1/24)*sum((sulfurdioxide-53.91667)^2)
[1] 97.25139
```

Comments:

- MLE of σ^{2} is not unbiased.
- If we let $\theta_{2}=\sigma$ instead of $\theta_{2}=\sigma^{2}$, we can show that \ldots

$$
\text { MLE of } \hat{\sigma}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

so that the MLE of $\sigma^{2}=[\text { MLE of } \sigma]^{2}$.
This is a general property of the MLE, i.e.

$$
\text { MLE of } g(\theta)=g(\text { MLE of } \theta)
$$

This is useful when we want to estimate functions of simple parameters.
Example 1 Exponential (θ) : Given the data from Example 4.1.1 (operating hours before failure of air-conditioning units), estimate the

1. probability that operating hours exceeds 300

Solution: $P(X>300)=\int_{300}^{\infty} \frac{1}{\theta} e^{-x / \theta} d x=e^{-300 / \theta}$. Since $\hat{\theta}_{M L E}=\bar{x}=163.5385$, the MLE of $e^{-300 / \theta}$ is $e^{-300 / 163.5385}=0.1597$.
2. 90th percentile of operating hours, i.e. find q such that $F(q)=.90$.

Solution: $.90=\int_{0}^{q} \frac{1}{\theta} e^{-x / \theta} d x=1-e^{-q / \theta}$ implies that $q=-\theta \ln (1-.90)$. The MLE is $-163.5385 \ln (1-.90)=376.56$ hours.

Example $2 \operatorname{Normal}\left(\mu, \sigma^{2}\right)$: Given the sulfur dioxide data from Example 4.1.3, estimate the

1. percentage of times that sulfur dioxide concentration is less than 50.0

Solution: $F(50.0)=\Phi\left(\frac{50-\mu}{\sqrt{\sigma^{2}}}\right)$. The MLE is $\Phi\left(\frac{50-\hat{\mu}}{\sqrt{\sigma^{2}}}\right)=\Phi\left(\frac{50-53.91667}{\sqrt{97.25139}}\right)=0.3456$
2. 90th percentile of sulfur dioxide concentrations

Solution: $q_{.90}=F^{-1}(.90)=\mu+1.2815 \sqrt{\sigma^{2}}$, so the MLE is $53.916+1.28 \sqrt{97.25}=66.55$.

5 Estimating a density (nonparametric estimates vs MLE)

Case 1: Discrete $p(x)$
Example 4.1.6 Poisson(λ): For $j=1,2,3,4,5,6$

$$
\hat{p}(j)=\text { proportion of sample equal to } j=\frac{\#\left\{x_{i}=j\right\}}{n}=\frac{\sum \mathbf{I}\left(x_{i}=j\right)}{n}
$$

where $\mathbf{I}(E)= \begin{cases}1, & \text { if } E \text { occurs } \\ 0, & \text { otherwise }\end{cases}$
For example, $p(3)=5 / 30=.167$. Note that the MLE is $e^{-\hat{\lambda}} \hat{\lambda}^{3} / 3$! where $\hat{\lambda}=\bar{x}$.

Case 2: Continuous $f(x)$.

$$
\begin{aligned}
P[x-h<X<x+h] & =\int_{x-h}^{x+h} f(t) d t \\
& =2 h f(\epsilon) \text { for some } \epsilon \text { in the interval }[x-h, x+h] \\
& \doteq 2 h f(x)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\hat{f}(x) & =\frac{\hat{P}(x-h<X<x+h)}{2 h}=\frac{\#\left\{x-h<x_{i}<x+h\right\}}{n 2 h} \\
& =\frac{1}{n 2 h} \sum_{i=1}^{n} \mathbf{I}\left(x-h \leq x_{i} \leq x+h\right)
\end{aligned}
$$

Comments:

1. This is a kernel density estimator (KDE) using a rectangular kernel
2. May be generalized to nonrectangular 'smoother' kernels
3. $2 h$ is called the bandwidth. There is a lot of research on optimal choice of bandwidth.

Example 4.1.7

```
> density(sulfurdioxide)
Call:
    density.default(x = sulfurdioxide)
Data: sulfurdioxide (24 obs.); Bandwidth 'bw' = 4.802
            x
Min. :19.00 Min. :3.977e-05
1st Qu.:35.72 1st Qu.:2.325e-03
Median :52.45 Median :1.325e-02
Mean :52.45 Mean :1.493e-02
3rd Qu.:69.18 3rd Qu.:2.742e-02
Max. :85.90 Max. :3.331e-02
> a<-density(sulfurdioxide)
> head(cbind(a$x,a$y))
            [,1] [,2]
[1,] 18.99507 3.976838e-05
[2,] 19.12601 4.316185e-05
[3,] 19.25695 4.684999e-05
[4,] 19.38789 5.071897e-05
[5,] 19.51883 5.497508e-05
```

```
[6,] 19.64977 5.951386e-05
> tail(cbind(a$x,a$y))
    [,1]
    [,2]
[507,] 85.25023 8.337117e-05
[508,] 85.38117 7.681850e-05
[509,] 85.51211 7.069109e-05
[510,] 85.64305 6.514269e-05
[511,] 85.77399 5.986374e-05
[512,] 85.90493 5.502299e-05
> hist(sulfurdioxide,xlim=c(20,80))
> plot(density(sulfurdioxide), xlim=c (20,80))
```


