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1 Sec. 4.7: Chi-square tests

Recall: If X1, . . . , Xn is a random sample from N(µ, σ2), then

1. Xi−µ
σ
∼ N(0, 1)

2.
(
Xi−µ
σ

)2 ∼ χ2

1 df

3.
(
X1−µ
σ

)2
+ · · ·+

(
Xn−µ
σ

)2 ∼ χ2
n

since if W1 and W2 are independent χ2 random variables with a and b degrees of freedom
respectively, then W1 +W2 ∼ χ2

a+b. The LHS of (3) can be written as

n∑
i=1

(
Xi − µ
σ

)2

=
n∑
i=1

(
(Xi −X) + (X − µ)

σ

)2

=
n∑
i=1

(
(Xi −X)2 + (X − µ)2 + 2(Xi −X)(X − µ)

σ2

)
=

n∑
i=1

(Xi −X)2

σ2
+
n(X − µ)2

σ2
+ 0

since
∑

(Xi −X) = 0. Now n(X−µ)2
σ2 =

(
X−µ
σ/
√
n

)2
∼ χ2

1 and it follows that

n∑
i=1

(Xi −X)2

σ2
∼ χ2

n−1

There are two common ways the literature explains n− 1 degrees of freedom.

• “Estimation of µ by X reduces df by 1”

• “Since X1 −X, . . . , Xn −X sum to 0, there are only n-1 degrees of freedom”

Basically, the estimation of µ by X introduces a constraint.
Now, let Z1, Z2, . . . , Zn be a random sample of Bernoulli(p) random variables,

Zi =

{
1 with probability p
0 with probability 1− p
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Let X1 =
∑n

i=1 Zi be the number of 1s (or successes) in the sample, and let X2 = n − X1

denote the number of 0s (or failures). Then both X1 and X2 are binomial

X1 ∼ Bin(n, p1) and X2 ∼ Bin(n, p2)

where p1 denotes the probability of success p and p2 = 1 − p is the probability of failure.
From properties of the binomial random variable

E(X1) = np1, V (X1) = np1(1− p1)

E(X2) = np2, V (X2) = np2(1− p2)
By the Central Limit Theorem, a binomial random variable is approximately normal for
reasonably large n so

X1 − np1√
np1(1− p1)

is approximately N(0, 1)

and

Q =
(X1 − np1)2

np1(1− p1)
is approximately χ2

1

Now rewrite Q as follows

Q =
(X1 − np1)2

np1(1− p1)
[(1− p1) + p1]

=
(X1 − np1)2

np1
+

(X1 − np1)2

n(1− p1)

=
(X1 − np1)2

np1
+

((n−X2)− n(1− p2))2

np2

=
(X1 − np1)2

np1
+

(X2 − np2)2

np2

=
(O1 − E1)

2

E1

+
(O2 − E2)

2

E2

where Oi and Ei denote observed and expected counts, respectively.

Theorem 1. Let (X1, X2, . . . , Xk) be a multinomial random variable with number of trials
n and probability vector (p1, p2, . . . , pn). Then

Qk−1 =
k∑
i=1

(Xi − npi)2

npi

.∼ χ2
k−1

Proof. Skip.

Comments:

• Often we write the χ2 statistic as Q =
∑k

i=1
(Oi−Ei)

2

Ei
where Ei = npi.

• This theorem provides a test for compatibility of observed frequencies with expected
frequencies from a null model H0. Reject H0 if Q > χ2

.05,k−1.

• Note that the χ2 distribution is approximate. A usual rule of thumb is to require
Ei ≥ 5, i = 1, . . . , k.
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1.1 χ2 goodness-of-fit test

Example 4.7.1
Roll a six-sided die 60 times. Suppose that we observe the following outcome frequencies:
(13, 19, 11, 8, 5, 4). Is the die fair, or does this provide evidence that the die is not balanced?

Solution. The null model says that (p1, . . . , p6) = (1/6, . . . , 1/6), so we test

H0 : p1 = · · · = p6 = 1/6 vs H1 : At least one inequality

Under H0, the expected values are Ei = 60(1/6) = 10 for i = 1, . . . , 6 and

Q5 =
(13− 10)2

10
+

(19− 10)2

10
+

(11− 10)2

10
+

(8− 10)2

10
+

(5− 10)2

10
+

(4− 10)2

10
= .9 + 8.1 + .1 + .4 + .25 + 3.6 = 15.6

The 95th percentile of χ2
5 is 11.1, so we reject H0. The p-value is P [χ2

5 > 15.6] = .0081 �

Example: Mendel’s pea experiments (Ref: https://www.ncbi.nlm.nih.gov/books/NBK22098/)
Mendel took two parental pure lines (one was yellow, wrinkled seeds, the other had green,
round seeds). The cross between these two lines produced seeds which were all were round
and yellow. Next, Mendel selfed the plants, allowing the pollen of each flower to fall on its
own stigma. This time, wrinkled and green seeds appeared. The frequencies are reported
below. Mendel’s hypothesis of dominant and recessive traits predicted the four cells have
frequencies (9/16, 3/16, 3/16, 1/16). Do the data agree?

Yellow Green
Round 315 108

Wrinkled 101 32

Solution. The observed counts are (315, 108, 101, 32) for a total of 556 seeds. Under H0 :
(9/16, 3/16, 3/16, 1/16) the expected counts are

n(p1, p2, p3, p4) = 556(9/16, 3/16, 3/16, 1/16) = (312.75, 104.25, 104.25, 34.75)

Then

Q3 =
(315− 312.75)2

312.75
+

(108− 104.25)2

104.25
+

(101− 104.25)2

104.25
+

(32− 34.75)2

34.75
= .4699

The 95th percentile of χ2
3 is 7.81. Therefore, we do not reject the null. The data does not

contradict Mendel’s model. �

Example 4.7.2
Suppose that the unit interval is partitioned into 4 segments

A1 = (0, 1/4 ], A2 = (1/4, 1/2 ], A3 = (1/2, 3/4 ], A4 = (3/4, 1)

A random sample of n = 80 observations yields the following frequencies falling into each
interval: (6, 18, 20, 36). Conduct a goodness-of-fit test for

H0 : f(x) = 2x, 0 < x < 1 vs H1 : Not
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Under H0, the probability vector of falling into each interval is (1/16, 3/16, 5/16, 7/16). The
expected counts for 80 observations are (5, 15, 25, 35). Then

Q3 =
(6− 5)2

5
+

(18− 15)2

15
+

(20− 25)2

25
+

(36− 35)2

35
=

64

35
= 1.8286

The 95th percentile of χ2
3 is 7.81, and p-value=.6087. Therefore, we do not reject the null.

1.2 Nuisance parameters

Let Y1, . . . , Yn be a random sample from N(µ, σ2). Partition the real line into disjoint
intervals A1, . . . , Ak. We want to test

H0 : N(µ, σ2) vs H1 : Not

If we let X1, . . . , Xk be the frequency of A1, . . . , Ak, then Qk−1 =
∑k

i=1
(Xi−npi)2

npi
but the {pi}

cannot be computed because we do not know µ and σ2. There are two options:

1. Replace µ and σ2 with values that would minimize Qk−1

2. Replace µ and σ2 with their maximum likelihood estimates

Comments:

• The values µ and σ2 in case (1) are called minimum chi-square estimates. The resulting
statistic Q is now smaller than it would have been if we had used the true values of
µ and σ2. In fact, it can be shown that the null distribution of Q is closer to χ2 with
k − 3 degrees of freedom instead of k − 1 (one df is lost for every nuisance parameter
estimated). In general

Q =
k∑
i=1

(Xi − npi)2

npi

.∼ χ2
k−1−c

where c is the number of parameters that were replaced with minimum chi-square
estimates.

• The statistic Q in case (2) is easier to calculate than the minimum chi-square in case
(1). However, Q is also larger, so keep in mind that the probability of rejection, and
hence the size of the test, may be inflated.
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Goodness-of-fit test in R:

> x<-c(13,19,11,8,5,4)

> ps<-rep(1/6,6)

> expect<-sum(x)*ps

> expect

[1] 10 10 10 10 10 10

> (x-expect)^2/expect

[1] 0.9 8.1 0.1 0.4 2.5 3.6

> sum((x-expect)^2/expect)

[1] 15.6

>

> # Critical value

> qchisq(.95, df=5)

[1] 11.0705

>

> # P-value

> 1-pchisq(15.6,df=5)

[1] 0.008083914

>

> # Usin built-in chisq.test()

> chisq.test(x,p=ps)

Chi-squared test for given probabilities

data: x

X-squared = 15.6, df = 5, p-value = 0.008084
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