
Stat 4620: Day 16

(3/21)

Sec. 6.1 (con’t.): Maximum Likelihood Estimation

Theorem 5. Let x = (x1, . . . , xn) be a random sample from a density f(x; θ), θ ∈ Ω. Let η = g(θ).
Suppose that θ̂ is the mle of θ, then g(θ̂) is the mle of η = g(θ).

Proof. Case 1: Suppose that g(·) is a one-to-one function. Then

L(θ;x) =
∏

f(xi; θ) =
∏

f(xi; g
−1(η))

But the maximum occurs when g−1(η̂) = θ̂. This implies η̂ = g(θ̂). For example, suppose that
x1, . . . , xn is a random sample from N(µ, 1) and x = 5.2, say. Then

L(µ;x) = (2π)−n/2e−(1/2)
∑

(xi−µ)2

is maximum when µ̂ = 5.2. If the parameter of interest is η = eµ, then

L(η;x) = (2π)−n/2e−(1/2)
∑

(xi−ln η)2

is maximum when ln η̂ = 5.2. This implies η̂ = e5.2.
Case 2: (Heuristic) Suppose that g(·) is not one-to-one. For example, suppose the parameter

of interest in our example above is η = cos(µ). Note that µ is not a function of η, since 1/2 =
cos(π/3) = cos(π/3 + 2π) = cos(π/3 + 4π) implies that

cos−1(1/2) = ?

However, if we go ahead and write the likelihood in terms of η

L(η;x) = (2π)−n/2e−(1/2)
∑

(xi−cos−1(η)2

then this is maximized when η̂ is such that cos−1(η̂) = 5.2, which implies that

η̂ = cos(5.2) = .4685 uniquely!

Theorem 6. Suppose that x = (x1, . . . , xn) satisfy assumptions (R0) and (R1), plus

(R2) the true value θ0 is an interior point of Ω

then the likelihood equation
∂

∂θ
L(θ) = 0

or equivalently
∂

∂θ
l(θ) = 0

has a solution θ̂n such that θ̂n
P→ θ0.
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Proof. Let the constant a > 0 be such that (θ0 − a, θ0 + a) ⊂ Ω. Let

Sn = {x : l(θ0;x) > l(θ0 − a;x)} ∩ {x : l(θ0;x) > l(θ0 + a;x)}

Then P (Sn) → 1 by Theorem 4 of Day 15 notes. So with probability approaching 1, there exists
θ̂n such that

l′(θ̂n) = 0 and |θ̂n − θ0| < a

Thus P [|θ̂n − θ0| < a]→ 1, or θ̂n
P→ θ0.

Corollary (Consistency). Suppose that x = (x1, . . . , xn) satisfy assumptions (R0)-(R2), and the

likelihood equation has a unique solution θ̂n. Then θ̂n
P→ θ0.

Sec. 6.2: Rao-Cramer Lower Bound and Efficiency

Example (Poisson) Let x = (x1, x2, x3) = (5, 0, 1) be observations from a Poisson distribution with
mean θ. Then the likelihood and log-likelihood are

L(θ;x) =
∏

p(xi; θ) =

(
e−θθ5

5!

)(
e−θθ0

0!

)(
e−θθ1

1!

)
=
e−3θ θ6

5! 0! 1!

l(θ) = lnL(θ) = −3θ + 6 ln θ − ln(5! 0! 1!)

Comment:

• The shape of L(θ) and lnL(θ) change with the data

• We are trying to find the value of θ that maximizes L(θ), so steeper is better.

In general, if x1, . . . , xn is a random sample from Poisson(θ),

lnL(θ) = ln
n∏
i=1

e−θθxi

xi!
= ln

e−nθθ
∑
xi∏

xi!
= −nθ +

∑
xi ln θ −

∑
lnxi!

∂

∂θ
lnL(θ) = −n+

∑
xi
θ
≡ 0⇒ θ̂ =

∑
xi
n

= x

Fisher information

First, we derive some relationships.

1 =

∫
f(x; θ)dx

Taking derivative of both sides with respect to θ

0 =

∫
∂

∂θ
f(x; θ)dx =

∫ [ ∂
∂θf(x; θ)

f(x; θ)

]
f(x; θ)dx =

∫ [
∂

∂θ
ln f(x; θ)

]
f(x; θ)dx (1)

Which gives Equation (6.2.2) in textbook

0 = E

[
∂

∂θ
ln f(X; θ)

]
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Example (Poisson con’t.) Since f(X; θ) = e−θθX

X! , then

E

[
∂

∂θ
ln f(X; θ)

]
= E

[
∂

∂θ
(−θ +X ln θ − lnX!)

]
= E

[
−1 +

X

θ

]
= −1 +

θ

θ
= 0

Taking derivative of both sides of equation (1),

0 =

∫ [
∂

∂θ2
ln f(x; θ)

]
f(x; θ)dx+

[
∂

∂θ
ln f(x; θ)

]
∂

∂θ
f(x; θ)dx

=

∫ [
∂

∂θ2
ln f(x; θ)

]
f(x; θ)dx+

[
∂

∂θ
ln f(x; θ)

] ∂
∂θf(x; θ)

f(x; θ)
f(x; θ)dx

=

∫ [
∂

∂θ2
ln f(x; θ)

]
f(x; θ)dx+

[
∂

∂θ
ln f(x; θ)

]2
f(x; θ)dx

= E

[
∂

∂θ2
ln f(X; θ)

]
+ E

[
∂

∂θ
ln f(X; θ)

]2
which gives the following equivalent expressions for the Fisher information of X

−E
[
∂

∂θ2
ln f(X; θ)

]
= E

[
∂

∂θ
ln f(X; θ)

]2
= V

[
∂

∂θ
ln f(X; θ)

]
≡ I(θ)

Example (Poisson con’t.) f(x; θ) = e−θθx

x!

ln f(x; θ) = −θ + x ln θ − lnx!

∂

∂θ
ln f(x; θ) = −1 +

x

θ

∂

∂θ2
ln f(x; θ) = − x

θ2

Two ways to calculate the Fisher information of X:

1. I(θ) = −E
[
∂
∂θ2

ln f(X; θ)
]

= −E
[
X
θ2

]
= θ

θ2
= 1

θ

2. I(θ) = V
[
∂
∂θ ln f(X; θ)

]
= V

[
−1 + X

θ

]
=
(
1
θ

)2
V (X) =

(
1
θ

)2
θ = 1

θ

Fisher information of a random sample

Let X = (X1, . . . , Xn) be independent random variables with density f(x; θ). The Fisher informa-
tion of the random sample X is defined as

In(θ) = V

[
∂

∂θ
lnL(θ;X)

]
Since the variables are independent,

In(θ) = V

[
∂

∂θ

n∑
i=1

ln f(θ;Xi)

]
= V

[
n∑
i=1

∂

∂θ
ln f(θ;Xi)

]
=

n∑
i=1

V

[
∂

∂θ
ln f(θ;Xi)

]
= nI(θ)
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Rao-Cramer Lower Bound

Theorem 7. Let x1, . . . , xn be a random sample from f(x; θ), θ ∈ Ω. Assume that (R0)-(R4) hold.
Let Y = U(x1, . . . , xn) be a statistic with mean k(θ). Then

V (Y ) ≥ [k′(θ)]2

nI(θ)

Corollary. If E(Y ) = θ, then

V (Y ) ≥ 1

nI(θ)

Implication: Allows optimality results.

Example (Poisson con’t.) f(x; θ) = e−θθx

x! . Let U(x1, . . . , xn) = x. Note that E(U) = θ. RCLB
says that if Y is any unbiased estimator of θ, then

V (Y ) ≥ 1

nI(θ)
=

1

n(1/θ)
=
θ

n

But V (U) = V (x) = θ/n, so x is minimum variance unbiased.

Proof.

k(θ) = E [U(X1, . . . , Xn)] =

∫
· · ·
∫
U(x1, . . . , xn)f(x1; θ) · · · f(xn; θ)dx1 · · · dxn

k′(θ) =

∫
· · ·
∫
U(x1, . . . , xn)

[
n∑
i=1

f ′(xi; θ)

f(xi; θ)

]
f(x1; θ) · · · f(xn; θ)dx1 · · · dxn

= E

[
U(X1, . . . , Xn)

n∑
i=1

f ′(Xi; θ)

f(Xi; θ)

]

= E

[
U(X1, . . . , Xn)

n∑
i=1

∂

∂θ
ln f(Xi; θ)

]

= ρ

(
U(X1, . . . , Xn),

n∑
i=1

∂

∂θ
ln f(Xi; θ)

)√
V (U(X1, . . . , Xn))

√√√√V

(
n∑
i=1

∂

∂θ
ln f(Xi; θ)

)

[
k′(θ)

]2 ≤ V (U(X1, . . . , Xn))V

(
n∑
i=1

∂

∂θ
ln f(Xi; θ)

)
= V (U(X1, . . . , Xn))nI(θ)

which implies

V (U(X1, . . . , Xn)) ≥ [k′(θ)]2

nI(θ)

Comments:

1. ∂
∂θ ln f(X; θ) is called the score function of X

2. E(score function) = 0 and V (score function) = I(θ)

3. θ̂mle is solution to
∑n

i=1
∂
∂θ ln f(X; θ̂) = 0
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