Stat 4620: Day 16

Sec. 6.1 (con't.): Maximum Likelihood Estimation

Theorem 5. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a random sample from a density $f(x ; \theta), \theta \in \Omega$. Let $\eta=g(\theta)$. Suppose that $\hat{\theta}$ is the mle of θ, then $g(\hat{\theta})$ is the mle of $\eta=g(\theta)$.

Proof. Case 1: Suppose that $g(\cdot)$ is a one-to-one function. Then

$$
L(\theta ; \mathbf{x})=\prod f\left(x_{i} ; \theta\right)=\prod f\left(x_{i} ; g^{-1}(\eta)\right)
$$

But the maximum occurs when $g^{-1}(\hat{\eta})=\hat{\theta}$. This implies $\hat{\eta}=g(\hat{\theta})$. For example, suppose that x_{1}, \ldots, x_{n} is a random sample from $N(\mu, 1)$ and $\bar{x}=5.2$, say. Then

$$
L(\mu ; \mathbf{x})=(2 \pi)^{-n / 2} e^{-(1 / 2) \sum\left(x_{i}-\mu\right)^{2}}
$$

is maximum when $\hat{\mu}=5.2$. If the parameter of interest is $\eta=e^{\mu}$, then

$$
L(\eta ; \mathbf{x})=(2 \pi)^{-n / 2} e^{-(1 / 2) \sum\left(x_{i}-\ln \eta\right)^{2}}
$$

is maximum when $\ln \hat{\eta}=5.2$. This implies $\hat{\eta}=e^{5.2}$.
Case 2: (Heuristic) Suppose that $g(\cdot)$ is not one-to-one. For example, suppose the parameter of interest in our example above is $\eta=\cos (\mu)$. Note that μ is not a function of η, since $1 / 2=$ $\cos (\pi / 3)=\cos (\pi / 3+2 \pi)=\cos (\pi / 3+4 \pi)$ implies that

$$
\cos ^{-1}(1 / 2)=?
$$

However, if we go ahead and write the likelihood in terms of η

$$
L(\eta ; \mathbf{x})=(2 \pi)^{-n / 2} e^{-(1 / 2) \sum\left(x_{i}-\cos ^{-1}(\eta)^{2}\right.}
$$

then this is maximized when $\hat{\eta}$ is such that $\cos ^{-1}(\hat{\eta})=5.2$, which implies that

$$
\hat{\eta}=\cos (5.2)=.4685 \text { uniquely! }
$$

Theorem 6. Suppose that $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ satisfy assumptions (R0) and (R1), plus
(R2) the true value θ_{0} is an interior point of Ω
then the likelihood equation

$$
\frac{\partial}{\partial \theta} L(\theta)=0
$$

or equivalently

$$
\frac{\partial}{\partial \theta} l(\theta)=0
$$

has a solution $\hat{\theta}_{n}$ such that $\hat{\theta}_{n} \xrightarrow{P} \theta_{0}$.

Proof. Let the constant $a>0$ be such that $\left(\theta_{0}-a, \theta_{0}+a\right) \subset \Omega$. Let

$$
S_{n}=\left\{\mathbf{x}: l\left(\theta_{0} ; \mathbf{x}\right)>l\left(\theta_{0}-a ; \mathbf{x}\right)\right\} \cap\left\{\mathbf{x}: l\left(\theta_{0} ; \mathbf{x}\right)>l\left(\theta_{0}+a ; \mathbf{x}\right)\right\}
$$

Then $P\left(S_{n}\right) \rightarrow 1$ by Theorem 4 of Day 15 notes. So with probability approaching 1 , there exists $\hat{\theta}_{n}$ such that

$$
l^{\prime}\left(\hat{\theta}_{n}\right)=0 \text { and }\left|\hat{\theta}_{n}-\theta_{0}\right|<a
$$

Thus $P\left[\left|\hat{\theta}_{n}-\theta_{0}\right|<a\right] \rightarrow 1$, or $\hat{\theta}_{n} \xrightarrow{P} \theta_{0}$.
Corollary (Consistency). Suppose that $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ satisfy assumptions (R0)-(R2), and the likelihood equation has a unique solution $\hat{\theta}_{n}$. Then $\hat{\theta}_{n} \xrightarrow{P} \theta_{0}$.

Sec. 6.2: Rao-Cramer Lower Bound and Efficiency

Example (Poisson) Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)=(5,0,1)$ be observations from a Poisson distribution with mean θ. Then the likelihood and log-likelihood are

$$
\begin{gathered}
L(\theta ; \mathbf{x})=\prod p\left(x_{i} ; \theta\right)=\left(\frac{e^{-\theta} \theta^{5}}{5!}\right)\left(\frac{e^{-\theta} \theta^{0}}{0!}\right)\left(\frac{e^{-\theta} \theta^{1}}{1!}\right)=\frac{e^{-3 \theta} \theta^{6}}{5!0!1!} \\
l(\theta)=\ln L(\theta)=-3 \theta+6 \ln \theta-\ln (5!0!1!)
\end{gathered}
$$

Comment:

- The shape of $L(\theta)$ and $\ln L(\theta)$ change with the data
- We are trying to find the value of θ that maximizes $L(\theta)$, so steeper is better.

In general, if x_{1}, \ldots, x_{n} is a random sample from $\operatorname{Poisson}(\theta)$,

$$
\begin{aligned}
\ln L(\theta)=\ln \prod_{i=1}^{n} \frac{e^{-\theta} \theta^{x_{i}}}{x_{i}!}=\ln \frac{e^{-n \theta} \theta \sum x_{i}}{\prod x_{i}!}=-n \theta+\sum x_{i} \ln \theta-\sum \ln x_{i}! \\
\frac{\partial}{\partial \theta} \ln L(\theta)=-n+\frac{\sum x_{i}}{\theta} \equiv 0 \Rightarrow \hat{\theta}=\frac{\sum x_{i}}{n}=\bar{x}
\end{aligned}
$$

Fisher information

First, we derive some relationships.

$$
1=\int f(x ; \theta) d x
$$

Taking derivative of both sides with respect to θ

$$
\begin{equation*}
0=\int \frac{\partial}{\partial \theta} f(x ; \theta) d x=\int\left[\frac{\frac{\partial}{\partial \theta} f(x ; \theta)}{f(x ; \theta)}\right] f(x ; \theta) d x=\int\left[\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right] f(x ; \theta) d x \tag{1}
\end{equation*}
$$

Which gives Equation (6.2.2) in textbook

$$
0=E\left[\frac{\partial}{\partial \theta} \ln f(X ; \theta)\right]
$$

$$
E\left[\frac{\partial}{\partial \theta} \ln f(X ; \theta)\right]=E\left[\frac{\partial}{\partial \theta}(-\theta+X \ln \theta-\ln X!)\right]=E\left[-1+\frac{X}{\theta}\right]=-1+\frac{\theta}{\theta}=0
$$

Taking derivative of both sides of equation (1),

$$
\begin{aligned}
0 & =\int\left[\frac{\partial}{\partial \theta^{2}} \ln f(x ; \theta)\right] f(x ; \theta) d x+\left[\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right] \frac{\partial}{\partial \theta} f(x ; \theta) d x \\
& =\int\left[\frac{\partial}{\partial \theta^{2}} \ln f(x ; \theta)\right] f(x ; \theta) d x+\left[\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right] \frac{\frac{\partial}{\partial \theta} f(x ; \theta)}{f(x ; \theta)} f(x ; \theta) d x \\
& =\int\left[\frac{\partial}{\partial \theta^{2}} \ln f(x ; \theta)\right] f(x ; \theta) d x+\left[\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right]^{2} f(x ; \theta) d x \\
& =E\left[\frac{\partial}{\partial \theta^{2}} \ln f(X ; \theta)\right]+E\left[\frac{\partial}{\partial \theta} \ln f(X ; \theta)\right]^{2}
\end{aligned}
$$

which gives the following equivalent expressions for the Fisher information of X

$$
-E\left[\frac{\partial}{\partial \theta^{2}} \ln f(X ; \theta)\right]=E\left[\frac{\partial}{\partial \theta} \ln f(X ; \theta)\right]^{2}=V\left[\frac{\partial}{\partial \theta} \ln f(X ; \theta)\right] \equiv \mathbf{I}(\theta)
$$

Example (Poisson con't.) $f(x ; \theta)=\frac{e^{-\theta} \theta^{x}}{x!}$

$$
\begin{gathered}
\ln f(x ; \theta)=-\theta+x \ln \theta-\ln x! \\
\frac{\partial}{\partial \theta} \ln f(x ; \theta)=-1+\frac{x}{\theta} \\
\frac{\partial}{\partial \theta^{2}} \ln f(x ; \theta)=-\frac{x}{\theta^{2}}
\end{gathered}
$$

Two ways to calculate the Fisher information of X :

1. $\mathbf{I}(\theta)=-E\left[\frac{\partial}{\partial \theta^{2}} \ln f(X ; \theta)\right]=-E\left[\frac{X}{\theta^{2}}\right]=\frac{\theta}{\theta^{2}}=\frac{1}{\theta}$
2. $\mathbf{I}(\theta)=V\left[\frac{\partial}{\partial \theta} \ln f(X ; \theta)\right]=V\left[-1+\frac{X}{\theta}\right]=\left(\frac{1}{\theta}\right)^{2} V(X)=\left(\frac{1}{\theta}\right)^{2} \theta=\frac{1}{\theta}$

Fisher information of a random sample

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be independent random variables with density $f(x ; \theta)$. The Fisher information of the random sample \mathbf{X} is defined as

$$
\mathbf{I}_{n}(\theta)=V\left[\frac{\partial}{\partial \theta} \ln L(\theta ; \mathbf{X})\right]
$$

Since the variables are independent,

$$
\mathbf{I}_{n}(\theta)=V\left[\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \ln f\left(\theta ; X_{i}\right)\right]=V\left[\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f\left(\theta ; X_{i}\right)\right]=\sum_{i=1}^{n} V\left[\frac{\partial}{\partial \theta} \ln f\left(\theta ; X_{i}\right)\right]=n \mathbf{I}(\theta)
$$

Rao-Cramer Lower Bound

Theorem 7. Let x_{1}, \ldots, x_{n} be a random sample from $f(x ; \theta), \theta \in \Omega$. Assume that (R0)-(R4) hold. Let $Y=U\left(x_{1}, \ldots, x_{n}\right)$ be a statistic with mean $k(\theta)$. Then

$$
V(Y) \geq \frac{\left[k^{\prime}(\theta)\right]^{2}}{n \mathbf{I}(\theta)}
$$

Corollary. If $E(Y)=\theta$, then

$$
V(Y) \geq \frac{1}{n \mathbf{I}(\theta)}
$$

Implication: Allows optimality results.
 says that if Y is any unbiased estimator of θ, then

$$
V(Y) \geq \frac{1}{n \mathbf{I}(\theta)}=\frac{1}{n(1 / \theta)}=\frac{\theta}{n}
$$

But $V(U)=V(\bar{x})=\theta / n$, so \bar{x} is minimum variance unbiased.
Proof.

$$
\begin{aligned}
& k(\theta)=E\left[U\left(X_{1}, \ldots, X_{n}\right)\right]=\int \cdots \int U\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1} ; \theta\right) \cdots f\left(x_{n} ; \theta\right) d x_{1} \cdots d x_{n} \\
k^{\prime}(\theta)= & \int \cdots \int U\left(x_{1}, \ldots, x_{n}\right)\left[\sum_{i=1}^{n} \frac{f^{\prime}\left(x_{i} ; \theta\right)}{f\left(x_{i} ; \theta\right)}\right] f\left(x_{1} ; \theta\right) \cdots f\left(x_{n} ; \theta\right) d x_{1} \cdots d x_{n} \\
= & E\left[U\left(X_{1}, \ldots, X_{n}\right) \sum_{i=1}^{n} \frac{f^{\prime}\left(X_{i} ; \theta\right)}{f\left(X_{i} ; \theta\right)}\right] \\
= & E\left[U\left(X_{1}, \ldots, X_{n}\right) \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f\left(X_{i} ; \theta\right)\right] \\
= & \rho\left(U\left(X_{1}, \ldots, X_{n}\right), \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f\left(X_{i} ; \theta\right)\right) \sqrt{V\left(U\left(X_{1}, \ldots, X_{n}\right)\right)} \sqrt{V\left(\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f\left(X_{i} ; \theta\right)\right)} \\
& {\left[k^{\prime}(\theta)\right]^{2} \leq V\left(U\left(X_{1}, \ldots, X_{n}\right)\right) V\left(\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f\left(X_{i} ; \theta\right)\right)=V\left(U\left(X_{1}, \ldots, X_{n}\right)\right) n \mathbf{I}(\theta) }
\end{aligned}
$$

which implies

$$
V\left(U\left(X_{1}, \ldots, X_{n}\right)\right) \geq \frac{\left[k^{\prime}(\theta)\right]^{2}}{n \mathbf{I}(\theta)}
$$

Comments:

1. $\frac{\partial}{\partial \theta} \ln f(X ; \theta)$ is called the score function of X
2. $E($ score function $)=0$ and $V($ score function $)=\mathbf{I}(\theta)$
3. $\hat{\theta}_{\text {mle }}$ is solution to $\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f(X ; \hat{\theta})=0$
