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Sec. 6.2: Efficiency of an estimator

Definition 6.2.1 (Efficient Estimator). Let Y be an unbiased estimator of a parameter θ in the
case of point estimation. The statistic Y is called an efficient estimator of θ if and only if V (Y )
attains the Rao-Cramer lower bound.
Definition 6.2.2 (Efficiency). Let Y be an unbiased estimator of a parameter θ in the case of
point estimation. The efficiency of Y is

e(Y ) =
RCLB

V (Y )

Example (Beta(θ, 1)) Let x1, . . . , xn be a random sample from a distribution with continuous pdf

f(x; θ) = θxθ−1, 0 < x < 1

where θ ∈ (0,∞). Then
ln f = ln θ + (θ − 1) lnx

∂

∂θ
ln f =

1

θ
+ lnx

and the information is

I(θ) = −E
[
∂2

∂θ2
ln f

]
= −E

[
− 1

θ2

]
=

1

θ2

Next, we find the mle of θ.

l(θ) =

n∑
i=1

ln f(xi; θ) = n ln θ + θ
∑

lnxi −
∑

lnxi

∂

∂θ
l(θ) =

n

θ
+
∑

lnxi

Equating to 0 and solving for θ, the mle is

θ̂ =
−n∑
lnxi

It can be shown that − lnXi has Γ(1, 1/θ) distribution and consequently, W = −
∑n

i=1 lnXi has
Γ(n, 1/θ) distribution. It has been shown in Chapter 3 that

E
(
W k
)

=
(n+ k − 1)!

θk(n− 1)!

for k > −n. Then

E
(
θ̂
)

= E
( n
W

)
= nE

(
W−1

)
= n

(
(n− 2)!

θ−1(n− 1)!

)
= θ

n

n− 1

1



So the mle θ̂ is biased, but the bias disappears as n→∞. Note, however, that the estimator

Y =
n− 1

n
θ̂ =
−(n− 1)∑

lnxi

is unbiased for θ. The variance of this unbiased estimator can be shown to equal

V (Y ) =
θ2

n− 2

The RCLB is

RCLB =
1

nI(θ)
=
θ2

n

The efficiency of the unbiased estimator is

e(Y ) =
RCLB

V (Y )
=
n− 2

n

so the estimator Y is not efficient but is asymptotically efficient.

Sec. 6.2: Asymptotic normality of mle

Theorem 8. Let x1, . . . , xn be a random sample from f(x; θ), θ ∈ Ω. Let θ0 denote the true value.
Assume that (R0)-(R5) hold, and suppose that 0 < I(θ) <∞. Then the mle θ̂n satisfies

√
n
(
θ̂n − θ0

)
D−→ N

(
0,

1

I(θ0)

)
Comments:

1. The theorem says: for large n,

θ̂n
.∼ N

(
θ0,

1

nI(θ0)

)
2. The theorem’s conclusion is read as “...converges in distribution to...” and is formally defined

as:
lim
n→∞

P
[√

nI(θ0)
(
θ̂n − θ0

)
≤ t
]

= Φ(t)

where Φ is cdf of N(0, 1).

3. The asymptotic variance of θ̂n is the RCLB, so the mle is asymptotically optimal.

Proof.

l(θ) = lnL(θ) = ln

n∏
i=1

f(xi, θ) =

n∑
i=1

ln f(xi, θ)

1√
n
l′(θ) =

1√
n

n∑
i=1

∂

∂θ
ln f(xi, θ)

The score functions
{
∂
∂θ ln f(xi, θ)

}
are independent and identically distributed random variables

with mean 0 and variance I(θ). By the Central Limit Theorem,

1√
n
l′(θ)

D−→ N(0, I(θ)) (1)
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By the Law of Large Numbers

− 1

n
l′′(θ) = − 1

n

n∑
i=1

∂2

∂θ2
ln f(xi, θ)

P−→ I(θ) (2)

The mle θ̂n satisfies l′(θ̂n) = 0. Using Taylor’s expansion of l′(θ),

0 = l′(θ̂n) = l′(θ0) +
(
θ̂n − θ0

)
l′′(θ0) +

1

2

(
θ̂n − θ0

)2
l′′′(θ∗n)

where θ∗n is between θ̂n and θ0. Rearranging terms,(
θ̂n − θ0

)
=

−l′(θ0)

l′′(θ0) + 1
2

(
θ̂n − θ0

)
l′′′(θ∗n)

Furthermore,

√
n
(
θ̂n − θ0

)
=

1√
n
l′(θ0)

− 1
n l
′′(θ0)− 1

n
1
2

(
θ̂n − θ0

)
l′′′(θ∗n)

≡ An
Bn + Cn

By equations (1) and (2), An
D−→ N(0, I(θ)), Bn

P→ I(θ), and Cn
P→ 0.

√
n
(
θ̂n − θ0

)
D−→ N(0, I(θ))

I(θ) + 0
∼ N

(
0,

1

I(θ)

)

Definition 6.2.3 (Asymptotic Efficiency) Let x1, . . . , xn be independent and identically distributed
random variables from a distribution with density f(x; θ). Suppose that θ̂1n(x1, . . . , xn) is an

estimator of θ0 such that
√
n
(
θ̂1n − θ0

)
D−→ N

(
0, σ2

θ̂1n

)
. Then

1. The asymptotic efficiency of θ̂1n is defined to be

e(θ̂1n) =
1/I(θ0)

σ2
θ̂1n

2. The estimator θ̂1n is said to be asymptotically efficient if its asymptotic efficiency is 1.

3. Let θ̂2n(x1, . . . , xn) be another estimator of θ0 such that
√
n
(
θ̂2n − θ0

)
D−→ N

(
0, σ2

θ̂2n

)
.

Then the asymptotic relative efficiency (ARE) of θ̂1n to θ̂2n is

e
(
θ̂1n, θ̂2n

)
=
σ2
θ̂2n

σ2
θ̂1n

Example 6.2.5 (ARE of the sample median to the mean)
Q: What is the ARE of the sample median to the sample mean?
A: It depends on the underlying distribution.

Case 1: Laplace

f(xi) =
1

2
e−|xi−θ|, −∞ < xi <∞, i = 1, . . . , n
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We already know that the sample median is mle of θ. By theorem, the asymptotic variance is

σ2
θ̂1n

=
1

Iθ
= 1

since Iθ = 1 (show this). The asymptotic variance of the sample mean is

σ2
θ̂2n

= 2

(show this). Then

ARE (median, mean) =
σ2
θ̂2n

σ2
θ̂1n

=
2

1
= 2.

Case 2: Normal

f(xi) =
1√
2π
e−(xi−θ)

2/2, −∞ < xi <∞, i = 1, . . . , n

By Theorem 10.2.3, the asymptotic variance of the sample median is

σ2
θ̂1n

=
1

4f2(θ0)
=
π

2

For the sample mean,
σ2
θ̂2n

= 1

so

ARE (median, mean) =
σ2
θ̂2n

σ2
θ̂1n

=
1

π/2
= 2/π = .636
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