Section 4.1 (con’t.)
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1 Point Estimators

Note: The MLE works for more than one parameter: 6 = [0y, 6]

Example 4.1.3
Let Xl,XQ, ey

Xy, ~ N(p,0?). Let 0 = [01,602] = [p1,0%]. Then
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Taking partial derivatives with respect to p and o2, respectively
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Setting both equations to 0 and solving for i and &
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Comments:

e MLE of o2 is not unbiased.
e If we let #y = o instead of #y = o2, we can show that ...
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MLE of 6 =
n

so that the MLE of 02 = [MLE of ¢]?.



This is a general property of the MLE, i.e.
MLE of ¢(#) = g(MLE of 0)
This is useful because the quantities we want to estimate often turn out to be functions of simple

parameters.

Example:
Given a random sample x1,...,x,, estimate the percentage of population less than a certain
value, say, 10.0

1. Exponential
F(10) = 1 — e 199 which is a function g(6).
MLE of F(10) is then g(f) =1 — e 10/7

2. N(u,0?)
F(10) =& (Q%“) which is a function ¢(61, 62).
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MLE of F(10) is g(01,02) = ® ( Z(zi_x)z/n>

Comment: Be careful about taking derivatives

Example 4.1.4
Let (z1,x2,x3,24) = (7.9,10.5,4.2,7.1) be a random sample from Unif(0, #). Find MLE of 6.
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which is maximum at 6 = 10.5. In general, for 1, ...z, from Unif(0, #), the MLE is

éMLE = max(wl, ceey xn)

2 Estimating a density (nonparametric estimates vs MLE)

Case 1: Discrete p(z)
Example 4.1.6
For j=1,2,3,4,5,6

p(j) = proportion of sample equal to j
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where I(E) — { 1, if E occurs

0, otherwise
For example, p(3) = 5/30 = .167. Note that this is not the same as the MLE estimate.
(HW 2: Prob. 4.1.8.)

Case 2: Continuous f(z).
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Comments:
1. This is a kernel density estimator (KDE) using a rectangular kernel
2. May be generalized to nonrectangular ‘smoother’ kernels

3. 2h is called the bandwidth. There is a lot of research on optimal choice of bandwidth.



(Example 4.1.7 of 7th Ed)

[Workspace loaded from ~/.RDatal

> ex417<-c(63,58,60,60,39,41,57,49,44,36,52,48,44,19,42,67,44,64,34,46)
> hist(ex417)

> density(ex417)

Call:
density.default(x = ex417)

Data: ex417 (20 obs.); Bandwidth ’bw’ = 5.92

X y
Min. 1 1.241 Min. :3.788e-05
1st Qu.:22.120 1st Qu.:2.084e-03
Median :43.000 Median :7.240e-03
Mean :43.000 Mean :1.196e-02
3rd Qu.:63.880 3rd Qu.:2.351e-02
Max. :84.759 Max. :3.109e-02

> plot(density(ex417))
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