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1 Point Estimators

Note: The MLE works for more than one parameter: θ = [θ1, θ2]

Example 4.1.3
Let X1, X2, . . . , Xn ∼ N(µ, σ2). Let θ = [θ1, θ2] =

[
µ, σ2

]
. Then

f(xi; θ) =
1√

2πσ2
e−

(xi−µ)2

2σ2

L(θ) =
∏

f(xi; θ) =
(

1
2πσ2

)n/2

e−
1

2σ2

P
(xi−µ)2

l(θ) = lnL(θ) =
∏

f(xi; θ) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

∑
(xi − µ)2

Taking partial derivatives with respect to µ and σ2, respectively

1. ∂
∂µ l(θ) = − 1

2σ2

∑
2(xi − µ)(−1)

2. ∂
∂σ2 l(θ) = − n

2σ2 + 1
2(σ2)2

∑
(xi − µ)2

Setting both equations to 0 and solving for µ̂ and σ̂2,∑
(xi − µ̂) = 0 ⇒

∑
xi = nµ̂ ⇒ µ̂ = x

n

σ̂2
=

1
(σ̂2)2

∑
(xi − x)2 ⇒ σ̂2 =

∑
(xi − x)2

n

so the MLE is

θ̂ =
[

θ̂1

θ̂2

]
=

[
µ̂
σ̂2

]
=

[
xP

(xi−x)2

n

]
Comments:

• MLE of σ2 is not unbiased.

• If we let θ2 = σ instead of θ2 = σ2, we can show that . . .

MLE of σ̂ =

√∑
(xi − x)2

n

so that the MLE of σ2 = [MLE of σ]2.



This is a general property of the MLE, i.e.

MLE of g(θ) = g(MLE of θ)

This is useful because the quantities we want to estimate often turn out to be functions of simple
parameters.

Example:
Given a random sample x1, . . . , xn, estimate the percentage of population less than a certain

value, say, 10.0

1. Exponential

F (10) = 1− e−10/θ which is a function g(θ).

MLE of F (10) is then g(θ̂) = 1− e−10/x

2. N(µ, σ2)

F (10) = Φ
(

10−µ
σ

)
which is a function g(θ1, θ2).

MLE of F (10) is g(θ̂1, θ̂2) = Φ
(

10−x√P
(xi−x)2/n

)
Comment: Be careful about taking derivatives

Example 4.1.4
Let (x1, x2, x3, x4) = (7.9, 10.5, 4.2, 7.1) be a random sample from Unif(0, θ). Find MLE of θ.

f(xi; θ) =
{

1
θ , if 0 ≤ xi ≤ θ
0, otherwise

L(θ) =
{ (

1
θ

)4
, if 0 ≤ x1 ≤ θ, 0 ≤ x2 ≤ θ, 0 ≤ x3 ≤ θ, 0 ≤ x4 ≤ θ,

0, otherwise

=


0, if θ = 9.0
0, if θ = 10.0

(1/11)4, if θ = 11.0
(1/12)4, if θ = 12.0

=
{

0, if θ < 10.5
(1/θ)4, if θ =≥ 10.5



which is maximum at θ̂ = 10.5. In general, for x1, . . . , xn from Unif(0, θ), the MLE is

θ̂MLE = max(x1, . . . , xn)

2 Estimating a density (nonparametric estimates vs MLE)

Case 1: Discrete p(x)

Example 4.1.6

For j = 1, 2, 3, 4, 5, 6

p̂(j) = proportion of sample equal to j

=
#{xi = j}

n

=
∑

I(xi = j)
n

where I(E) =
{

1, if E occurs
0, otherwise

For example, p(3) = 5/30 = .167. Note that this is not the same as the MLE estimate.

(HW 2: Prob. 4.1.8.)

Case 2: Continuous f(x).

P [x− h < X < x + h] =
∫ x+h

x−h
f(t)dt

= 2hf(ε) for some ε in the interval [x− h, x + h]
.= 2hf(x)

Therefore

f̂(x) =
P̂ (x− h < X < x + h)

2h

=
#{x− h < xi < x + h}

n2h

=
1

n2h

n∑
i=1

I(x− h ≤ xi ≤ x + h)

Comments:

1. This is a kernel density estimator (KDE) using a rectangular kernel

2. May be generalized to nonrectangular ‘smoother’ kernels

3. 2h is called the bandwidth. There is a lot of research on optimal choice of bandwidth.



(Example 4.1.7 of 7th Ed)

[Workspace loaded from ~/.RData]

> ex417<-c(63,58,60,60,39,41,57,49,44,36,52,48,44,19,42,67,44,64,34,46)
> hist(ex417)
> density(ex417)

Call:
density.default(x = ex417)

Data: ex417 (20 obs.); Bandwidth ’bw’ = 5.92

x y
Min. : 1.241 Min. :3.788e-05
1st Qu.:22.120 1st Qu.:2.084e-03
Median :43.000 Median :7.240e-03
Mean :43.000 Mean :1.196e-02
3rd Qu.:63.880 3rd Qu.:2.351e-02
Max. :84.759 Max. :3.109e-02
> plot(density(ex417))


