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Sec. 9.6: Application of Likelihood Estimation to Linear Regression

Example: There is often interest in the relationship between two variables. For example, let

Y = Calculus grade and X = Math aptitude test score

How well does knowing X predict Y ? Given data for n students (x1, y1)(x2, y2), . . . , (xn, yn), the
regression model may be written as follows:

yi = β0 + β1xi + εi, i = 1, 2, . . . , n

where {εi} are independent N(0, σ2). An equivalent way of writing the model is

{Yi} are independent, and Yi ∼ N(β0 + β1xi, σ
2)

This allows likelihood estimation

L(β0, β1, σ
2) =

n∏
i=1

1√
2πσ2

e−
[yi−(β0+β1xi)]

2

2σ2

=

(
1

2πσ2

)n
2

e−
∑

[yi−(β0+β1xi)]
2

2σ2

and

lnL(β0, β1, σ
2) =

n

2
ln(2πσ2)−

∑
[yi − (β0 + β1xi)]

2

2σ2

If we take partial derivatives, this gives a set of three equations in three unknowns. Solution of the
linear equations results in the least squares estimates

β̂1 =
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Sec: Likelihood Estimation in Logistic Regression (GLM)

Example: A sample of n = 25 programmers who were asked to complete a certain coding task
within a specified length of time. The table below presents data on whether they were successful
(Y = 1) or not (Y = 0), and a measure of their programming experience in months.

Person Months Y Success

1 14 0 No

2 29 0 No

3 6 0 No

4 25 1 Yes

5 18 1 Yes

6 4 0 No

7 18 0 No

8 12 0 No

9 22 1 Yes

:

:

22 4 0 No

23 28 1 Yes

24 22 1 Yes

25 8 1 Yes

We want to answer the following questions:

1. Is experience a predictor of success?

2. How strongly? Or similarly, what is the ”effect size”?

0.1 The generalized linear model

Let

πi = P [Yi = 1|xi] = g(β0 + β1xi) (g is called the link function)

=
eβ0+β1xi

1 + eβ0+β1xi
( logistic link)

(Plot here)

The Bernoulli probability function is
yi 1 0

P (Yi = yi | xi) πi 1− πi
. We may write this more

compactly as
P (Yi = yi | xi) = πyii (1− πi)1−yi , yi = 0, 1

Likelihood estimation:

L(β0, β1) =

n∏
i=1

P [Yi = yi|xi] =
∏

πyii (1− πi)1−yi

= P [Y1 = 0 | x1 = 14] · P [Y2 = 0 | x2 = 29] · · ·P [Y25 = 1 | x25 = 8]

=

(
1− eβ0+β114

1 + eβ0+β114

)(
1− eβ0+β129

1 + eβ0+β129

)
· · ·
(

eβ0+β18

1 + eβ0+β18

)
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Find (β̂0, β̂1) that maximizes L(β0, β1). The mle estimates are (β̂0 = −3.0597, β̂1 = 0.1615), and
the mle of the logistic prediction function is

π̂i =
e−3.0597+.1615 xi

1 + e−3.0597+.1615 xi

Table: SAS Output: Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.0597 1.2594 5.9029 0.0151

months 1 0.1615 0.0650 6.1760 0.0129

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

months 1.175 1.035 1.335

To calculate the standard errors, recall that
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For example,

lnL(β0, β1) =
∑

ln

(
eβ0+β1xi

1 + eβ0+β1xi

)yi (
1− eβ0+β1xi

1 + eβ0+β1xi

)1−y1

=
∑

yi ln
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+
∑

(1− yi) ln
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1− eβ0+β1xi
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)
0.2 Odds ratio

Recall that

P [Yi = 1 | xi] = πi =
eβ0+β1xi

1 + eβ0+β1xi
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and

P [Yi = 0 | xi] = 1− πi = 1− eβ0+β1xi

1 + eβ0+β1xi
=

1 + eβ0+β1xi

1 + eβ0+β1xi
− eβ0+β1xi

1 + eβ0+β1xi

=
1

1 + eβ0+β1xi

Then
Oddsi =

πi
1− πi

= eβ0+β1xi

The odds ratio provides a convenient measure of effect size. For example, by how much does an
additional month of experience increase the odds of success?

OR =
Odds(Y = 1 | x = 10)

Odds(Y = 1 | x = 9)
=
eβ0+β110

eβ0+β19
= eβ1

For our programming example,

ÔR = eβ̂1 = e.1615 = 1.175

Furthermore,

OR =
Odds(Y = 1 | x = 20)

Odds(Y = 1 | x = 19)
=
eβ0+β120

eβ0+β119
= eβ1

so we can say that the odds of success increases by 17.5% for every additional month of programming
experience. In general

Odds(Y = 1 | x = b+ δ)

Odds(Y = 1 | x = b)
= eβ1δ

Example (con’t.) What is the effect of an additional 6 months of programming experience?

Solution.
eβ1δ = e.1615(6) = 2.635

Comment: Note that e.1615(6) =
[
e.1615

]6
= [1.175]6 �

0.3 Confidence interval for odds ratio

First we construct a 95% confidence interval for β1. Let (L,U) be the lower and upper endpoints
of the confidence interval for β1

β̂1 ± t.975,n−2SEβ̂1

Then
.95 = P (L ≤ β1 ≤ U) = P

(
eL ≤ eβ1 ≤ eU

)
so that (

eL, eU
)

=
(
e
β̂1−t SEβ̂1 , e

β̂1+t SEβ̂1

)
is a 95% confidence interval for the odds ratio.

Example (Association between homocysteine and risk of stroke)
A study involving n = 2258 patients used logistic regression models, odds ratios (OR), and their
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associated 95% confidence intervals (CI) to estimate an independent effect of homocysteine (Hcy)
on the risk of stroke. According to Table 2 of the paper, the odds ratio was

OR = 1.024 (CI : 1.015− 1.034)

for

Model 1: πi =
eβ0+β1 lnHCy

1 + eβ0+β1 lnHcy

The Hcy effects are similar when adjusted for age and sex:

Model 2: πi =
eβ0+β1 lnHcy+β2Age+β3Sex

1 + eβ0+β1 lnHcy+β2Age+β3Sex

where Sex=1 if male, Sex=0 if female. This now requires likelihood maximization over p = 4
parameters. The estimated coefficient β̂1 will change, but odds ratio is interpreted similarly. Since

Oddsi =
πi

1− πi
= eβ0+β1 lnHcy+β2Age+β3Sex

then the odds ratio of stroke for every additional unit increase in ln Hcy is

Odds(Y = 1 | lnHcy + 1, Age, Sex)

Odds(Y = 1 | lnHcy,Age, Sex)
=
eβ0+β1 lnHcy+1+β2Age+β3Sex

eβ0+β1 lnHcy+β2Age+β3Sex
= eβ1

A categorical analysis was done with the ln Hcy variable divided into Low (< 1.09), Middle
(1.09 − 1.23) and High (> 1.23). Two indicator variables W1 and W2 were created and coded as
follows:

(W1,W2) =


(0, 0) if lnHcy < 1.09
(1, 0) if 1.09 ≤ lnHcy ≤ 1.23
(0, 1) if 1.23 < lnHcy

Note that W1 is an indicator for middle values and W2 is an indicator for high values. The following
model was fit to data:

πi =
eβ0+β1W1+β2W2

1 + eβ0+β1W1+β2W2

or equivalently

Oddsi =
πi

1− πi
= eβ0+β1W1+β2W2

Then
Odds(Y = 1 | Middle)

Odds(Y = 1 | Low )
=
eβ0+β1(1)+β2(0)

eβ0+β1(0)+β2(0)
= eβ1

and
Odds(Y = 1 | High)

Odds(Y = 1 | Low )
=
eβ0+β1(0)+β2(1)

eβ0+β1(0)+β2(0)
= eβ2

Here, Low is the reference category against which we compare Middle and High. The choice of
reference category is arbitrary, and chosen for simplicity of interpretation. Table 3 gives these odds
ratios, stratified by gender, age, and other variables of interest.

Caution: OR=4.0 means a quadrupling of odds, not a quadrupling of probabilities.

Prob Odds

1/10 (1/10)/(9/10) = 1 : 9
1/4 (1/4)/(3/4) = 1 : 3
1/2 (1/2)/(1/2) = 1 : 1
3/4 (3/4)/(1/4) = 3 : 1
9/10 (9/10)/(1/10) = 9 : 1
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