Sec. 9.6: Application of Likelihood Estimation to Linear Regression

Example: There is often interest in the relationship between two variables. For example, let

$$
Y=\text { Calculus grade and } X=\text { Math aptitude test score }
$$

How well does knowing X predict Y ? Given data for n students $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, the regression model may be written as follows:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1,2, \ldots, n
$$

where $\left\{\epsilon_{i}\right\}$ are independent $N\left(0, \sigma^{2}\right)$. An equivalent way of writing the model is

$$
\left\{Y_{i}\right\} \text { are independent, and } Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)
$$

This allows likelihood estimation

$$
\begin{aligned}
L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{n}{2}} e^{-\frac{\sum\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

and

$$
\ln L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{\sum\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}{2 \sigma^{2}}
$$

If we take partial derivatives, this gives a set of three equations in three unknowns. Solution of the linear equations results in the least squares estimates

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta}_{1} \bar{x} \\
\hat{\sigma}^{2} & =\frac{\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}{n}
\end{aligned}
$$

Sec: Likelihood Estimation in Logistic Regression (GLM)

Example: A sample of $n=25$ programmers who were asked to complete a certain coding task within a specified length of time. The table below presents data on whether they were successful $(Y=1)$ or not $(Y=0)$, and a measure of their programming experience in months.

Person	Months	Y	Success
1	14	0	No
2	29	0	No
3	6	0	No
4	25	1	Yes
5	18	1	Yes
6	4	0	No
7	18	0	No
8	12	0	No
9	22	1	Yes
$:$			
$:$			
22	4	0	No
23	28	1	Yes
24	22	1	Yes
25	8	1	Yes

We want to answer the following questions:

1. Is experience a predictor of success?
2. How strongly? Or similarly, what is the "effect size"?

0.1 The generalized linear model

Let

$$
\begin{aligned}
\pi_{i}=P\left[Y_{i}=1 \mid x_{i}\right] & =g\left(\beta_{0}+\beta_{1} x_{i}\right) \quad(g \text { is called the link function }) \\
& =\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}} \quad(\text { logistic link })
\end{aligned}
$$

(Plot here)

The Bernoulli probability function is $\frac{y_{i}}{P\left(Y_{i}=y_{i} \mid x_{i}\right)}$| π_{i} | $1-\pi_{i}$ |
| :---: | :---: | . We may write this more compactly as

$$
P\left(Y_{i}=y_{i} \mid x_{i}\right)=\pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}}, \quad y_{i}=0,1
$$

Likelihood estimation:

$$
\begin{aligned}
L\left(\beta_{0}, \beta_{1}\right) & =\prod_{i=1}^{n} P\left[Y_{i}=y_{i} \mid x_{i}\right]=\prod \pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}} \\
& =P\left[Y_{1}=0 \mid x_{1}=14\right] \cdot P\left[Y_{2}=0 \mid x_{2}=29\right] \cdots P\left[Y_{25}=1 \mid x_{25}=8\right] \\
& =\left(1-\frac{e^{\beta_{0}+\beta_{1} 14}}{1+e^{\beta_{0}+\beta_{1} 14}}\right)\left(1-\frac{e^{\beta_{0}+\beta_{1} 29}}{1+e^{\beta_{0}+\beta_{1} 29}}\right) \cdots\left(\frac{e^{\beta_{0}+\beta_{1} 8}}{1+e^{\beta_{0}+\beta_{1} 8}}\right)
\end{aligned}
$$

Find ($\hat{\beta}_{0}, \hat{\beta}_{1}$) that maximizes $L\left(\beta_{0}, \beta_{1}\right)$. The mle estimates are ($\left.\hat{\beta}_{0}=-3.0597, \hat{\beta}_{1}=0.1615\right)$, and the mle of the logistic prediction function is

$$
\hat{\pi}_{i}=\frac{e^{-3.0597+.1615 x_{i}}}{1+e^{-3.0597+.1615 x_{i}}}
$$

Table: SAS Output: Analysis of Maximum Likelihood Estimates

Parameter			Standard	Wald	
	DF	Estimate			Pr > ChiSq
Intercept months	1	-3.0597	1.2594	5.9029	0.0151
	1	0.1615	0.0650	6.1760	0.0129
	Odds Ratio Estimates				
				Wald	
	Effect	Estim	Conf	nce Limits	
	months		1.0	1.335	

To calculate the standard errors, recall that

$$
\left.V(\hat{\boldsymbol{\theta}}) \doteq \mathbf{I}_{n}^{-1}(\boldsymbol{\theta})\right)
$$

so

$$
\mathrm{SE}\left(\hat{\theta}_{i}\right)=\sqrt{\left[\mathbf{I}_{n}^{-1}(\boldsymbol{\theta})\right]_{i i}}
$$

where

$$
\begin{aligned}
\mathbf{I}_{n}(\boldsymbol{\theta}) & =-E\left[\frac{\partial^{2}}{\boldsymbol{\theta}^{2}} l(\boldsymbol{\theta})\right] \\
& =-E\left[\begin{array}{cc}
\frac{\partial^{2}}{\partial \beta^{2}} \ln L\left(\beta_{0}, \beta_{1}\right) & \frac{\partial^{2}}{\partial \beta_{0} \partial \beta_{1}} \ln L\left(\beta_{0}, \beta_{1}\right) \\
\frac{\partial^{2}}{\partial \beta_{0} \partial \beta_{1}} \ln L\left(\beta_{0}, \beta_{1}\right) & \frac{\partial^{2}}{\partial \beta_{1}^{2}} \ln L\left(\beta_{0}, \beta_{1}\right)
\end{array}\right]
\end{aligned}
$$

For example,

$$
\begin{aligned}
\ln L\left(\beta_{0}, \beta_{1}\right) & =\sum \ln \left(\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}\right)^{y_{i}}\left(1-\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}\right)^{1-y_{1}} \\
& =\sum y_{i} \ln \left(\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}\right)+\sum\left(1-y_{i}\right) \ln \left(1-\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}\right)
\end{aligned}
$$

0.2 Odds ratio

Recall that

$$
P\left[Y_{i}=1 \mid x_{i}\right]=\pi_{i}=\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}
$$

and

$$
\begin{aligned}
P\left[Y_{i}=0 \mid x_{i}\right]=1-\pi_{i} & =1-\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}=\frac{1+e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}}-\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}} \\
& =\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{i}}}
\end{aligned}
$$

Then

$$
\operatorname{Odds}_{i}=\frac{\pi_{i}}{1-\pi_{i}}=e^{\beta_{0}+\beta_{1} x_{i}}
$$

The odds ratio provides a convenient measure of effect size. For example, by how much does an additional month of experience increase the odds of success?

$$
O R=\frac{\operatorname{Odds}(Y=1 \mid x=10)}{\operatorname{Odds}(Y=1 \mid x=9)}=\frac{e^{\beta_{0}+\beta_{1} 10}}{e^{\beta_{0}+\beta_{1} 9}}=e^{\beta_{1}}
$$

For our programming example,

$$
\hat{O R}=e^{\hat{\beta_{1}}}=e^{.1615}=1.175
$$

Furthermore,

$$
O R=\frac{\operatorname{Odds}(Y=1 \mid x=20)}{\operatorname{Odds}(Y=1 \mid x=19)}=\frac{e^{\beta_{0}+\beta_{1} 20}}{e^{\beta_{0}+\beta_{1} 19}}=e^{\beta_{1}}
$$

so we can say that the odds of success increases by 17.5% for every additional month of programming experience. In general

$$
\frac{\operatorname{Odds}(Y=1 \mid x=b+\delta)}{\operatorname{Odds}(Y=1 \mid x=b)}=e^{\beta_{1} \delta}
$$

Example (con't.) What is the effect of an additional 6 months of programming experience?
Solution.

$$
e^{\beta_{1} \delta}=e^{.1615(6)}=2.635
$$

Comment: Note that $e^{.1615(6)}=\left[e^{1615}\right]^{6}=[1.175]^{6}$

0.3 Confidence interval for odds ratio

First we construct a 95% confidence interval for β_{1}. Let (L, U) be the lower and upper endpoints of the confidence interval for β_{1}

$$
\hat{\beta}_{1} \pm t .975, n-2 \mathrm{SE}_{\hat{\beta}_{1}}
$$

Then

$$
.95=P\left(L \leq \beta_{1} \leq U\right)=P\left(e^{L} \leq e^{\beta_{1}} \leq e^{U}\right)
$$

so that

$$
\left(e^{L}, e^{U}\right)=\left(e^{\hat{\beta}_{1}-t \mathrm{SE}_{\hat{\beta}_{1}}}, e^{\hat{\beta}_{1}+t \mathrm{SE}_{\hat{\beta}_{1}}}\right)
$$

is a 95% confidence interval for the odds ratio.
Example (Association between homocysteine and risk of stroke)
A study involving $n=2258$ patients used logistic regression models, odds ratios (OR), and their
associated 95% confidence intervals (CI) to estimate an independent effect of homocysteine (Hcy) on the risk of stroke. According to Table 2 of the paper, the odds ratio was

$$
O R=1.024(C I: 1.015-1.034)
$$

for

$$
\text { Model 1: } \pi_{i}=\frac{e^{\beta_{0}+\beta_{1} \ln H C y}}{1+e^{\beta_{0}+\beta_{1} \ln H c y}}
$$

The Hcy effects are similar when adjusted for age and sex:

$$
\text { Model 2: } \pi_{i}=\frac{e^{\beta_{0}+\beta_{1} \ln H c y+\beta_{2} A g e+\beta_{3} \text { Sex }}}{1+e^{\beta_{0}+\beta_{1} \ln H c y+\beta_{2} \text { Age }+\beta_{3} \text { Sex }}}
$$

where $\operatorname{Sex}=1$ if male, $\mathrm{Sex}=0$ if female. This now requires likelihood maximization over $p=4$ parameters. The estimated coefficient $\hat{\beta}_{1}$ will change, but odds ratio is interpreted similarly. Since

$$
\operatorname{Odds}_{i}=\frac{\pi_{i}}{1-\pi_{i}}=e^{\beta_{0}+\beta_{1} \ln H c y+\beta_{2} A g e+\beta_{3} S e x}
$$

then the odds ratio of stroke for every additional unit increase in \ln Hcy is

$$
\frac{\operatorname{Odds}(Y=1 \mid \ln H c y+1, \text { Age, Sex })}{\operatorname{Odds}(Y=1 \mid \ln H c y, \text { Age, Sex })}=\frac{e^{\beta_{0}+\beta_{1} \ln H c y+1+\beta_{2} A g e+\beta_{3} \text { Sex }}}{e^{\beta_{0}+\beta_{1} \ln H c y+\beta_{2} A g e+\beta_{3} S e x}}=e^{\beta_{1}}
$$

A categorical analysis was done with the ln Hcy variable divided into Low (<1.09), Middle (1.09-1.23) and High (> 1.23). Two indicator variables W_{1} and W_{2} were created and coded as follows:

$$
\left(W_{1}, W_{2}\right)=\left\{\begin{array}{ccc}
(0,0) & \text { if } & \ln H c y<1.09 \\
(1,0) & \text { if } & 1.09 \leq \ln H c y \leq 1.23 \\
(0,1) & \text { if } & 1.23<\ln H c y
\end{array}\right.
$$

Note that W_{1} is an indicator for middle values and W_{2} is an indicator for high values. The following model was fit to data:

$$
\pi_{i}=\frac{e^{\beta_{0}+\beta_{1} W_{1}+\beta_{2} W_{2}}}{1+e^{\beta_{0}+\beta_{1} W_{1}+\beta_{2} W_{2}}}
$$

or equivalently

$$
\operatorname{Odds}_{i}=\frac{\pi_{i}}{1-\pi_{i}}=e^{\beta_{0}+\beta_{1} W_{1}+\beta_{2} W_{2}}
$$

Then

$$
\frac{\operatorname{Odds}(Y=1 \mid \text { Middle })}{\operatorname{Odds}(Y=1 \mid \text { Low })}=\frac{e^{\beta_{0}+\beta_{1}(1)+\beta_{2}(0)}}{e^{\beta_{0}+\beta_{1}(0)+\beta_{2}(0)}}=e^{\beta_{1}}
$$

and

$$
\frac{\operatorname{Odds}(Y=1 \mid \text { High })}{\operatorname{Odds}(Y=1 \mid \operatorname{Low})}=\frac{e^{\beta_{0}+\beta_{1}(0)+\beta_{2}(1)}}{e^{\beta_{0}+\beta_{1}(0)+\beta_{2}(0)}}=e^{\beta_{2}}
$$

Here, Low is the reference category against which we compare Middle and High. The choice of reference category is arbitrary, and chosen for simplicity of interpretation. Table 3 gives these odds ratios, stratified by gender, age, and other variables of interest.
Caution: OR $=4.0$ means a quadrupling of odds, not a quadrupling of probabilities.

Prob	Odds
$1 / 10$	$(1 / 10) /(9 / 10)=1: 9$
$1 / 4$	$(1 / 4) /(3 / 4)=1: 3$
$1 / 2$	$(1 / 2) /(1 / 2)=1: 1$
$3 / 4$	$(3 / 4) /(1 / 4)=3: 1$
$9 / 10$	$(9 / 10) /(1 / 10)=9: 1$

