## Section 4.5

Day 9 (2/12)

## 1 Sec. 4.5 Intro to Hypothesis Testing

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with density $f(x ; \theta)$, for $\theta$ in the parameter space $\Omega$. Suppose we partition $\Omega$ into $\omega_{0}$ and $\omega_{1}$ such that

- $\omega_{0} \cap \omega_{1}=\phi$
- $\omega_{0} \cup \omega_{1}=\Omega$

Consider the two hypotheses $H_{0}: \theta \epsilon \omega_{0}$ versus $H_{1}: \theta \epsilon \omega_{1}$, called the null and alternative hypotheses, respectively. Let $\mathcal{D}$ be the domain of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Let $C$ be a subset of $\mathcal{D}$. Consider the rejection rule

$$
\text { Reject } H_{0} \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C
$$

and do not reject $H_{0}$ otherwise. Then $C$ is called the critical region or rejection region of the test. Since a "test of hypothesis" is completely determined by its critical region, we will treat the two terms as synonymous.

Example: Suppose we test $H_{0}: \mu=0$ versus $H_{1}: \mu>0$. We may describe the test in two equivalent ways:

- Reject $H_{0}$ if $\bar{x}>2(s / \sqrt{n})$
- Critical region: $[2(s / \sqrt{n}), \infty]$

Table 1: Type I and Type II errors

|  | True State of Nature |  |
| :--- | :---: | :---: |
| Decision | $H_{0}$ is true | $H_{0}$ is false |
| Reject $H_{0}$ | Type I error | Correct decision |
| Accept $H_{0}$ | Correct decision | Type II error |

Comments:

- If the critical region $C$ is the empty set $\phi$, then the test never rejects and $P[$ Type I error $]=$ 0.
- If the critical region $C$ is the whole domain $\mathcal{D}$, then the test always rejects and $P[$ Type II error $]=0$.

Definition: A critical region $C$ is of size $\alpha$ if

$$
\begin{equation*}
\alpha=\max _{\theta \epsilon \omega_{0}} P_{\theta}\left[\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in C\right] \tag{1}
\end{equation*}
$$

Definition: The power function of a test with critical region $C$ is

$$
\begin{equation*}
\gamma_{C}(\theta)=P_{\theta}\left[\left(X_{1}, X_{2}, \ldots, X_{n}\right) \epsilon C\right], \text { for } \theta \epsilon \omega_{1} \tag{2}
\end{equation*}
$$

i.e. the probability that the test correctly rejects $H_{0}$ when the true value of $\theta$ is in $H_{1}$. If two critical regions $C_{1}$ and $C_{2}$ have the same size, we say that $C_{1}$ is better than $C_{2}$ if $\gamma_{C_{1}}(\theta) \geq \gamma_{C_{2}}(\theta)$ for all $\theta \in \omega_{1}$.

### 1.1 Example: Binomial test

Let $X_{1}, X_{2}, \ldots, X_{20}$ be a random sample of size $n=20$ from a Bernoulli distribution with probability of success $p$, i.e.

$$
\begin{array}{c|cc}
x & 1 & 0 \\
\hline p(x) & p & 1-p
\end{array}
$$

Then the total number of successes is $S=\sum_{i=1}^{20} X_{i}$ has a binomial distribution

$$
S \sim \operatorname{Bin}(n=20, p)
$$

Now consider testing

$$
H_{0}: p=.70 \text { versus } H_{1}: p<.70
$$

Since fewer successes provide evidence toward $H_{1}$, it makes sense that the critical region should be of the form $S \leq k$, for $k$ some integer between 0 and 20 . For a given $k$, the size of the test is

$$
\alpha=P_{p=.70}[S \leq k]
$$

The following table gives $\alpha$ for different values of $k$, using the R function pbinom( $k, 20, p=.70$ ).

Table 2: Values of $\alpha$ for various rejection regions

| $k$ | $P[S \leq k]$ |
| ---: | :---: |
| 6 | 0.0003 |
| 7 | 0.0013 |
| 8 | 0.0051 |
| 9 | 0.0171 |
| 10 | 0.0480 |
| 11 | 0.1133 |
| 12 | 0.2277 |
| 13 | 0.3920 |
| 14 | 0.5836 |
| 15 | 0.7625 |

Now consider two possible tests

- Test 1: Reject $H_{0}$ if $S \leq 11$. This test has size $\alpha_{1}=P_{.70}[S \leq 11]=.1133$
- Test 2: Reject $H_{0}$ if $S \leq 12$. This test has size $\alpha_{2}=P_{.70}[S \leq 12]=.2277$

Note that Test 1 has smaller probability of wrongly rejecting $H_{0}$ (of course, since $C_{1} \subset C_{2}$ ). The tradeoff is that Test 1 also has smaller probability of correctly rejecting $H_{0}$. For example when the true value is $p=.65$

$$
P_{.65}[S \leq 11]=.2376 \text { and } P_{.60}[S \leq 12]=.3990
$$

or when the true value is $p=.60$

$$
P_{.60}[S \leq 11]=.4044 \text { and } P_{.50}[S \leq 12]=.5841
$$

The following table gives the power of Test 1 and Test 2 for different values of $p$. The two

Table 3: Power of tests

| $p$ | $P[S \leq 11]$ | $P[S \leq 12]$ |
| :---: | :---: | :---: |
| 0.30 | 0.9949 | 0.9987 |
| 0.35 | 0.9804 | 0.9940 |
| 0.40 | 0.9435 | 0.9790 |
| 0.45 | 0.8692 | 0.9420 |
| 0.50 | 0.7483 | 0.8684 |
| 0.55 | 0.5857 | 0.7480 |
| 0.60 | 0.4044 | 0.5841 |
| 0.65 | 0.2376 | 0.3990 |
| 0.70 | 0.1133 | 0.2277 |

power functions are plotted in Figure 4.5.1.

## Comments:

1. The null hypothesis $H_{0}: p=.70$ is an example of a simple null hypothesis because it contains only one point. This simplifies calculation of size of the test, for example

$$
\alpha=P_{p=.70}[S \leq 11]=.1133
$$

Often, the null hypothesis is written as a composite $H_{0}: p \geq .70$ versus $H_{1}: p<.70$ in which case definition (1) applies

$$
\alpha=\max _{p \geq .70} P_{p}[S \leq 11]=P_{p=.70}[S \leq 11]=.1133
$$

since the power curves in Figure 4.5 .1 are monotone decreasing which means the maximum over $\omega_{0}=[.70,1.0]$ occurs at the boundary $p=.70$.
2. Other names for the size of a test
(a) level of significance
(b) maximum power over the null region
(c) maximum $P$ [Type I error]
(d) Type I error rate
(e) false discovery rate

### 1.2 Large sample test for the mean

Example: Suppose $X_{1}, X_{2}, \ldots, X_{25}$ is a random sample from a population with mean $\mu$ and variance $\sigma^{2}=100$. To test for

$$
H_{0}: \mu=40.0 \text { versus } H_{1}: \mu>40.0
$$

consider the rejection region

$$
\begin{equation*}
\frac{\bar{X}-40.0}{S / \sqrt{25}} \geq 1.645 \tag{3}
\end{equation*}
$$

Since the LHS is approximately $N(0,1)$ under the null where $\mu=40.0$, the test (3) has size

$$
P_{\mu=40}\left(\frac{\bar{X}-40.0}{S / \sqrt{25}} \geq 1.645\right)=1-\Phi(1.645)=.05
$$

If the alternative hypothesis is true, then the LHS of (3) is not $N(0,1)$ because the mean is not 0 . The power function is

$$
\begin{aligned}
\gamma(\mu) & =P_{\mu}\left(\frac{\bar{X}-40.0}{S / \sqrt{n}} \geq 1.645\right)=P_{\mu}(\bar{X} \geq 40.0+1.645 S / \sqrt{n}) \\
& =P_{\mu}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \geq \frac{40.0-\mu+1.645 S / \sqrt{n}}{10 / \sqrt{25}}\right) \\
& \doteq 1-\Phi\left(\frac{40.0-\mu}{10 / \sqrt{25}}+1.645\right), \text { by the CLT and since } S / \sigma \doteq 1 \\
& =\Phi\left(-1.645-\frac{40.0-\mu}{10 / \sqrt{25}}\right)
\end{aligned}
$$

The following table gives $\gamma(\mu)$ for several values of $\mu$. Note that the test has size $\alpha=.05$, and increases as $\mu$ gets deeper into the alternative region. In general, let $X_{1}, X_{2}, \ldots, X_{n}$ be

Table 4: Power of tests

| $\mu$ | $\gamma(\mu)$ |
| :---: | :---: |
| 37 | 0.0008308 |
| 38 | 0.0040863 |
| 39 | 0.0159823 |
| 40 | 0.0500000 |
| 41 | 0.1261349 |
| 42 | 0.2595110 |
| 43 | 0.4424132 |
| 44 | 0.6387600 |
| 45 | 0.8037649 |
| 46 | 0.9123145 |
| 47 | 0.9682123 |

a random sample from a population density $f$ with mean $\mu$ and variance $\sigma^{2}$. For testing

$$
H_{0}: \mu=\mu_{0} \text { versus } H_{1}: \mu>\mu_{0}
$$

consider the rejection region

$$
\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \geq z_{\alpha}
$$

The power function is

$$
\begin{aligned}
\gamma(\mu) & =P_{\mu}\left(\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \geq z_{\alpha}\right)=P_{\mu}\left(\bar{X} \geq \mu_{0}+z_{\alpha} S / \sqrt{n}\right) \\
& =P_{\mu}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \geq \frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{\alpha} \frac{S / \sqrt{n}}{\sigma / \sqrt{n}}\right) \\
& \doteq 1-\Phi\left(\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}+z_{\alpha}\right) \\
& =\Phi\left(-z_{\alpha}-\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

## 2 Appendix

R code for Table 2

```
> k<-seq(0,20)
> options(scipen=999)
> cbind(k,pbinom(k,20,p=.70))
    k
    [1,] 0 0.0000000000348678
    [2,] 1 0.0000000016620339
    [3,] 2 0.0000000377308814
    [4,] 3 0.0000005426947468
    [5,] 4 0.0000055502530783
    [6,] 5 0.0000429400219536
    [7,] 6 0.0002610470070595
    [8,] 7 0.0012788796042202
    [9,] 8 0.0051381615351214
[10,] 9 0.0171448164312585
[11,] 10 0.0479618973313436
[12,] 11 0.1133314628769786
[13,] 12 0.2277282025818398
[14,] 13 0.3919901877990766
[15,] 14 0.5836291705525188
[16,] 15 0.7624922211223985
[17,] 16 0.8929131954962690
[18,] 17 0.9645168677015313
[19,] 18 0.9923627402258000
[20,] 19 0.9992020773370238
[21,] 20 1.0000000000000000
```

R code for Table 3

```
> pvec<-seq(.10,.70,by=.05)
> options(digits=4)
> cbind(pvec,pbinom(11,20,pvec), pbinom(12,20,pvec))
        pvec
    [1,] 0.10 1.0000 1.0000
    [2,] 0.15 1.0000 1.0000
    [3,] 0.20 0.9999 1.0000
    [4,] 0.25 0.9991 0.9998
    [5,] 0.30 0.9949 0.9987
    [6,] 0.35 0.9804 0.9940
    [7,] 0.40 0.9435 0.9790
    [8,] 0.45 0.8692 0.9420
    [9,] 0.50 0.7483 0.8684
[10,] 0.55 0.5857 0.7480
[11,] 0.60 0.4044 0.5841
[12,] 0.65 0.2376 0.3990
[13,] 0.70 0.1133 0.2277
```

R code for Table 4

```
> mu<-seq(35,50)
> cbind(mu,pnorm(qnorm(.05)-(40-mu)/2))
    mu
    [1,] 35 0.0000170
    [2,] 36 0.0001338
    [3,] 37 0.0008308
    [4,] 38 0.0040863
    [5,] 39 0.0159823
    [6,] 40 0.0500000
    [7,] 41 0.1261349
    [8,] 42 0.2595110
    [9,] 43 0.4424132
[10,] 44 0.6387600
[11,] 45 0.8037649
[12,] 46 0.9123145
[13,] 47 0.9682123
[14,] 48 0.9907423
[15,] 49 0.9978492
```

