Stat 4620 Homework 9

Due: February 14, 2019

1. Suppose that lifetime of a tire (in miles), say X, is normally distributed with mean θ and standard deviation $\sigma = 5000$. Past experience indicates that $\theta = 30000$ miles, but the manufacturer claims that a new production process has increased the mean lifetime. Given n independent observed values x_1, x_2, \ldots, x_n , we want to test

 $H_0: \theta = 30000$ against $H_1: \theta > 30000$

using a rejection rule of the form $\overline{x} \ge c$.

- (a) Write down the formula for the benchmark c so that the test has size $\alpha = .01$.
- (b) Calculate the values of n and c so that the test has size $\alpha = .01$ and power $\gamma(35000) = .98$.
- 2. Let X have a Poisson distribution with mean θ . Consider the hypotheses

 $H_0: \theta = 1/2$ versus $H_1: \theta < 1/2$

Let X_1, \ldots, X_{12} denote a random sample of size 12, and consider the rejection rule

Reject H_0 if $X_1 + \cdots + X_{12} \leq 2$

Recall that if X_1, \ldots, X_n are independent $Poisson(\theta)$, then $X_1 + \cdots + X_n$ is $Poisson(n\theta)$. Run the following R code and answer the questions.

```
theta<-seq(.1,.5,.05)
gam<-ppois(2, theta*12)
plot(gam~theta, pch=" ",xlab=expression(theta), ylab=expression(gamma))
lines(gam~theta)</pre>
```

- (a) What is the size of the test?
- (b) What is the power of the test at $\theta = 1/4$?