March 9 (Mon) 10 a.m.
Alavi Commons Room, 6625 Everett Tower

Spatially-explicit Survival Modeling for Small Area Cancer Data

Georgiana Onicescu
Medical University of South Carolina

A novel Bayesian statistical methodology for spatial survival data is proposed. The methodology broadens the definition of the survival, density and hazard functions by explicitly modeling the spatial dependency using direct derivations of these functions and their marginals and conditionals. Spatially dependent likelihood functions are also derived and simulations to compare my method with the random effects model are also given. Finally, the application of these derivations with geographically augmented survival distributions in the context of the Louisiana Surveillance, Epidemiology and End Results (SEER) registry prostate cancer data is discussed

All statistics students are expected to attend.


Past colloquiums


Department of Statistics
3304 Everett Tower
Western Michigan University
Kalamazoo MI 49008-5152 USA
(269) 387-1420 | (269) 387-1419 Fax