Objects

- Everything we deal with in R is object.
- Any object has two basic attributes: mode and length.
- The mode and length of an object \(obj \) can be accessed by function calls \(\text{mode}(obj) \) and \(\text{length}(obj) \).
- With caution, the mode and length of an object can be set/changed by function calls \(\text{mode}(obj) \leftarrow \text{value} \) and \(\text{length}(obj) \leftarrow \text{value} \).
- With few exceptions, each mode of objects have a constructor function \(\text{mode-name}(\text{length}=n,\ldots) \), mode-testing function \(\text{is.mode-name}(obj) \), and mode-coercing function \(\text{as.mode-name}(obj) \).
Basic Objects
Listed in increasing order of complexity (listed in constructor, mode-testing, and mode-coercing triplets):

- **NULL, is.null(obj), as.null(obj,...)** (note: \(c()\) creates **NULL**)
- **logical(length=0), is.logical(obj), as.logical(obj,...)** (note: **T**, **TRUE**; and **F**, **FALSE** are logical values)
- **integer(length=0), as.integer(obj, ...), is.integer(obj)** (note: primarily used in .C and .FORTRAN, ...)
- **numeric(length=0), as.numeric(obj, ...), is.numeric(obj)**
- **complex(length.out=0, real=numeric(), imaginary=numeric(), modulus=1, argument=0), as.complex(obj, ...), is.complex(obj)** (examples for complex values: **1+0i**, **−2+3i**)

Basic Objects
(continued)

- **character(length=0), as.character(obj, ...), is.character(obj)**
- **raw(length=0), as.raw(obj), is.raw(obj)**
- **Special constants**
 1. **NA** is a logical constant containing missing value indicator; it can be freely coerced to abovementioned modes except raw. is.na(obj); use is.na(obj)←index-values to set elements to missing values. ("" and NA are different for character values)
 2. **NaN** is a numeric constant (Not a Number); is.nan(obj). (example: \(\log(-1)\) generates NaN)
 3. **Inf** and **−Inf** are numeric constant (positive infinite and negative infinite); is.finite(obj) & is.infinite(obj). (example: \(\log(c(0/1,1/0))\) generates numeric vector of elements **−Inf** and **Inf**
Basic Objects
Attributes

- **Definition:** additional information associated with object. Some attributes force change to other data structures.

- **Access function:** `attr-name(obj)` or `attr(obj, "attr-name")`

- **Set/Replacement function:** `attr-name(obj) <-` or `attr(obj, "attr-name") <-`

- **Example attributes that do not force change to other structures:**
 1. `names` attribute associates elements with names (character strings)
 2. `comment` attribute add comments to an object.

dim attribute could force an object to change either matrix or array object. Example:

```r
x <- 1:24; names(x) <- LETTERS[1:24]
y <- x; dim(y) <- c(4,6) # 4 by 6 matrix
z <- x; dim(z) <- c(4,3,2) # 4 by 3 by 2 array
w <- x; dim(w) <- c(5,5) # error
```

Note:

- both `y` & `z` are of numeric mode
- avoid using `dim` function to construct matrix or array objects.
Basic Objects

Subscripting

\(\text{obj} \) with names attributes; assume \(x \) is a numeric vector of indexes (positive integers), \(a \) is a character vector, \(e \) is a logical vector of the same length as \(\text{obj} \)

- \(\text{obj}[x] \) subscripts \(\text{obj} \) with indexes, the result is of length \(\text{length}(x) \); note: NA for out-of-bound indexes
- \(\text{obj}[\neg x] \) subscripts all but elements indexed by \(x \)
- \(\text{obj}[a] \) subscripts elements named by \(a \); note: NA for name not in \(\text{names}(\text{obj}) \)
- \(\text{obj}[e] \) subscripts elements where elements of \(e \) are TRUE

Note: \(\text{obj}[0] \) returns \(\text{integer}(0) \).

Basic Objects

matrix

\[
\text{matrix}(\text{data} = \text{NA}, \ n\text{row} = 1, \ n\text{col} = 1, \\
\text{byrow} = \text{FALSE}, \ \text{dimnames} = \text{NULL})
\]

\(\text{as.matrix}(x, \ ...) \)

\(\text{is.matrix}(x) \)

- \(\text{matrix}(0,0,0) \) creates 0 by 0 matrix
- \(\text{matrix}(\text{F,3,4}) \) creates 3 by 4 matrix of logical mode
- \(\text{dimnames}(a)<- \)
 - \(\text{list(letters[1:3],LETTERS[1:4])} \) names rows & columns
- \(\text{rownames}(a)<-\text{c("one","two","three"}) \) names rows
- \(\text{colnames}(a)<-\text{c("x","y","z","w"}) \) names columns
Basic Objects
Matrix subscripting

Basic Objects

matrix (continued)

- dim(a) accesses dimension info
- nrow(a) gives number of rows
- ncol(a) gives number of columns
- element-wise operation: \(A \ op \ B; \) operators: + − \(* / \) \%\% \%\%\%; | &; > < >\(= <= === != \)
- matrix multiplication: \(A \ %*% B \)
- transpose: \(t(A) \)
- diagonal: diag(A) \(<\) value, diag(a)
- cross product: crossprod(A,B) gives \(A'B; \)
 crossprod(X) gives \(X'X \)
- outer product (multiplication table): \(a \ %o% b \)
- kronecker product: \(a \ %x% b \)

Basic Objects

Matrix subscripting

matrix A with dimnames attributes; x and y are numeric vectors of indexes; a and b are character vectors; e and f are logical vectors of respective lengths nrow(A) and ncol(A)

- subscripting by indexes: \(A[x,], A[,y], A[x,y], A[-x,], A[-,y], A[-x,-y] \)
- subscripting by names: \(A[a,], A[,b], A[a,b] \)
- subscripting by T/F: \(A[e,], A[,f], A[e,f] \)
- mix subscripting: \(A[-x,f] \)
- \(A[,1,drop=F] \) is a nrow(A) by 1 matrix
- all, except for last case, can appear at left side of \(<-\) for element replacement