Errata Sheet for
 8th Edition of
 Introduction to Mathematical Statistics
 R.V. Hogg, J.W. McKean, A.T. Craig

Many of these errors and typos were e-mailed to me by readers of HMC. THANKS!!!
Please send errors and typos to mckean@wmich.edu or via snail mail at

Dr. Joe McKean
Department of Statistics
Western Michigan University
Kalamazoo, MI 49008-5278

1. Page 9 , line 6 , limits of integration for $Q[(5, \infty)]$ are 5 and ∞.
2. Page 9 , line 13 , replace $1=3,4, \ldots$ with $i=2,3, \ldots$.
3. Page 52, last line, should read:

$$
F(x)=1-\left(1+5 e^{x}\right)^{-.2} \quad-\infty<x<\infty .
$$

4. Page 63 , the last line in the display is:

$$
e \sum_{y=0}^{\infty}\left(\frac{1}{2} e^{-1}\right)^{y+1}=\frac{1}{2} \frac{1}{1-(1 / 2) e^{-1}}=\frac{e}{2 e-1} .
$$

5. Page 100, line -3 , last line of equation is

$$
=e^{-\mu_{1}} \sum_{x_{1}=1}^{\infty} \mu_{1} \frac{\mu_{1}^{x_{1}-1}}{\left(x_{1}-1\right)!} \cdot 1=\mu_{1} .
$$

6. Page 161 , line 2 and line 6 , replace p_{k-1} with p_{k}.
7. Page 190, line 2, lower limit of integral is $-\infty$.
8. Page 210, Part (d) of Exercise 3.5.21: Not $(1 / 2) \bar{X}$ but $2 \bar{X}$.
9. Page 223, Exercise 3.7.4, replace $\alpha=\beta=2$ with $\alpha_{1}=\beta_{1}=\alpha_{2}=\beta_{2}=2$.
10. Page 224, Exercise 3.7.10, the bounds on k are $-\tau<k<\alpha \tau$.
11. Page 224, Exercise 3.7.11. The parameter λ for the random variable θ should be $\beta=1 / h$ and the unconditional pdf of X is

$$
\frac{\Gamma(\alpha+k) \Gamma(x+h) \Gamma(\alpha+h) \Gamma(x+k)}{\Gamma(\alpha) \Gamma(k) \Gamma(h) \Gamma(\alpha+h+x+k) x!}, \quad x=0,1,2, \ldots
$$

12. Page 224, Exercise 3.7.12, since $\alpha>0$, for the geometric pmf use

$$
g(\alpha)=p(1-p)^{\alpha-1}, \quad \alpha=1,2,3, \ldots
$$

13. Page 229, line 11, replace $[n /(n-1)] \sigma^{2}$ with $[(n-1) / n] \sigma^{2}$.
14. Page 370 , line 2 , replace $1-\frac{\epsilon}{2}$ with $1-\epsilon$.
15. Page 682, In the second row of the table of results, replace $\widehat{\delta}$ with $\widehat{\tau}$.
16. Page 722, in the answer to Exercise 1.7.20, replace $5+y$ with $1+5 y$.
17. Page 727, answer for Exercise 6.3.17 is 0.0086 not 0.0172 .
