SCL Mini Manual 2
SAS in the SCL

September 27, 1999
Contents

1 Introduction .. 3
2 Files used in SAS ... 5
3 Starting a SAS Session 7
4 Data Entry ... 9
 4.1 The Data Step ... 9
 4.1.1 Reading Data from an External File 10
 4.1.2 Reading Instream Data 10
 4.1.3 Reading Data from Existing SAS Data Sets 11
 4.1.4 Generating Data from Programming Statements ... 11
 4.2 A Sample DATA Step 11
5 Basic Statistical Analysis 13
 5.1 UNIVARIATE Procedures 13
 5.2 MEANS procedure 16
 5.3 SUMMARY procedure 17
 5.4 RANK procedure 17
 5.5 SORT ... 19
Chapter 1

Introduction

SAS, Statistical Analysis System, is an extremely powerful statistical package. Available on SCL, SAS offers a wide range of data management, statistical, and graphical procedures. SAS basics are very easy to learn for the beginning user, regardless of programming experience. This document is intended to get you started using SAS.
Chapter 2

Files used in SAS

Using SAS requires some knowledge of the UNIX operating systems and a text editor such as vi. It also requires some knowledge of files. Depending on the complexity of the analysis, some or all the file types below could be used.

- **SAS Program File** - The file which contains your SAS statements. This file must have a filetype extension of `sas`.

- **Data File** - Contains the data you wish SAS to process. This file are usually named with a filetype of `dat`.

- **Listing File** - The file created by SAS which contains the results from the SAS procedures you have requested. This file will always have the file types of `lst`.

- **Log File** - A file created by SAS which contains diagnostic information about your SAS job, including any errors which SAS may encounter. This file will always have the file type of `log`.
Chapter 3

Starting a SAS Session

To start SAS session at the "-> prompt simply type

"-> sas

The system will then open 3 windows in screen. They are LOG, PROGRAM EDITOR and OUTPUT windows. This display mode is called Display Manager Mode. In Display Manager Mode, you execute SAS programs in a windowing environment. You can edit and execute programming statements, display the SAS log, display procedure output, display online help, set function keys, and more. We can also use Noninteractive Mode. In Noninteractive Mode, SAS program statement are stored in an external file. That file type is .sas. The statements in the file execute immediately when you issue a SAS command referencing the file. For example, suppose you have written a sas program file, myfile.sas, then simply type

"-> sas myfile.sas

After a few seconds, the UNIX prompt will displayed again. It means that your job is finished. Then you type ls myfile.*, you should see two new files listed: myfile.lst and myfile.log. myfile.lst is the output file created by SAS which contains the results of your analysis. If you SAS program contains errors, this file may not be created.

Any errors which the program might have contained, as well as other information about your SAS job, are contained in the log file - myfile.log.
Chapter 4

Data Entry

Before you can analyze your data and produce a report with SAS software, the data must be in a form the SAS System can recognize. This form is called a SAS data set, and it consists of the following:

- descriptor information
- data values.

The descriptor information describes the contents of the SAS data set to the SAS System. The data values are the data that have been collected or calculated. They are organized into a rectangular structure containing rows called observations and columns called variables. An observation is a collection of data values that usually relate to a single object. A variable is the set of data values that describe a given characteristic.

To create a SAS data set from raw data with base SAS software, you had to use a group of SAS language statements called a DATA step. Using a DATA step, you can create a SAS data set in which data values are physically stored.

4.1 The Data Step

A DATA step consists of a group of statements in the SAS language that read raw data or existing SAS data sets to create a SAS data set. The kind of SAS data set created in a DATA step is called a SAS data file. With a DATA step, you can read your raw data or other existing SAS data sets and perform the calculations or manipulation necessary so that you can analyze your data and create reports with SAS procedures.

The type of input data used in a DATA step determines what data-reading statements you use. There are four types of simple DATA steps, categorized by the source of the input data: those that read

- data from an external file
• instream data

• data from existing SAS data sets

• no data but generate data from programming statements.

4.1.1 Reading Data from an External File

Structure of a DATA step:
DATA dataname; marks the beginning of the DATA step and gives a name \((\text{dataname}) \) to the SAS data set being created.
INFILE filename; identifies the external file \((\text{filename}) \) that contains the data.
INPUT statement; describes your input by giving a name to each variable and identifying its location in the data record. It causes a data record to be read.
Other SAS statement; enable you to modify the data, create new variables and so on.

4.1.2 Reading Instream Data

Structure of a DATA step:
DATA dataname; marks the beginning of the DATA step and gives a name \((\text{dataname}) \) to the SAS data set being created.
INPUT statement; describes your input by giving a name to each variable and identifying its location in the data record.
Other SAS statement; enable you to modify the data, create new variables and so on.
CARDS; marks the end of the programming statements and the beginning of the data.
Data lines are records of data values.
; marks the end of the data lines.
4.1.3 Reading Data from Existing SAS Data Sets

Structure of a DATA step:
DATA dataname; marks the beginning of the DATA step and gives
 a name (dataname) to the SAS data set
 being created.
SET, MERGE or UPDATE statement; identifies the existing SAS data sets used as
 input in the current DATA step. No description
 of the data values is needed; the descriptor
 portion of the existing SAS data set provides
 the necessary information about variables.
BY statement; specifies the identifying variables for the SET,
 MERGE, or UPDATE statement. This statement
 is optional with a SET or a MERGE statement
 but is required with an UPDATE statement.
Other SAS statement; enable you to modify the data, create new
 variables and so on.

4.1.4 Generating Data from Programming Statements

It is possible to create data for a SAS data set by generating observations with programming
statements, such as DO loops and assignment statements, rather than by reading data.
Structure of a DATA step:
DATA dataname; marks the beginning of the DATA step and gives a name
 (dataname) to the SAS data set being created.
Programming statements; generate data, as with DO loops and assignment statements.
Other SAS statement; enable you to modify the data, create new variables and so on.

4.2 A Sample DATA Step

The following statements provide a simple example of a DATA step.

DATA age;
INFILE 'age.dat';
INPUT age gender;
DATA press;
INPUT low high;
 diff=high-low;
CARDS;
70 110
75 108
90 110
80 112
95 130
;
DATA general;
MERGE age press;
difage=diff*age;
FILE 'total.dat';
PUT age -- diffage;

In above DATA step, at first step, we create a SAS data set age from raw data stored in an external file age.dat. This SAS data set includes two variables age and gender. The second step is to produce a SAS data set press from data lines in the job stream. In this SAS data set, there are three variables low, high, and new created variable diff. At third step, we create a SAS data set general. This SAS data set one-to-one merging combines observations from two SAS data set age and press. In same time, we create a new variables diffage. So, there are total 6 variables in this SAS data set. We use FILE 'total.dat' to create external data file total.dat. PUT age -- diffage, this step writes variables age to diffage to the file total.dat.
Chapter 5

Basic Statistical Analysis

The SAS programming statements are consisted by several PROC steps to do some sort of analysis. In this section, we will brief introduction some basic SAS procedures.

5.1 UNIVARIATE Procedures

This procedure computes univariate statistics, including quantiles, and draws distributional plots. It can provides the following:

- details on the extreme values of a variable
- quantiles, such as the median
- frequency tables
- several plots to illustrate the distribution
- paired comparison tests
- tests of central location
- a test to determine whether the data are normally distributed

The UNIVARIATE procedure is controlled by the following statements:

 PROC UNIVARIATE (DATA=dataset name) (FREQ) (PLOT) (NORMAL);
 BY variable-list;
 VAR variable-list;

Option:

1. DATA=SAS-data-set names the SAS data set to be used by PROC UNIVARIATE. If the DATA= option is omitted, the most recently created SAS data set is used.
2. **FREQ** requests a frequency table consisting of the variable values, frequencies, percentages, and cumulative percentages.

3. **PLOT** produces a stem-and-leaf plot (or a horizontal bar chart), a box plot, and a normal probability plot. If a **BY** statement is used, side-by-side boxplots labeled **Schematic Plots** appear for groups defined by the **BY** variables.

4. **NORMAL** computes a test statistic for the hypothesis that the input data come from a normal distribution. The **NORMAL** option also computes and prints the probability of a more extreme value of the test statistic. If the sample size is less than or equal to 2000, this is the Shapiro-Wilk statistic. Otherwise, it is the Kolmogorov statistic.

5. **BY** variable-list obtain separate analyses on observations in groups defined by the **BY** variables.

Example: SAS program:

```sas
option ls=80;
DATA press;
INPUT low high;
diff=high-low;
CARDS;
70 110
75 108
90 110
80 112
95 130
;
PROC UNIVARIATE FREQ PLOT NORMAL;
VAR diff low high;
run;
```

The selected SAS output (for variable fidd):

```
Univariate Procedure

Variable=DIFF

Moments

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>32</td>
<td>Sum</td>
</tr>
<tr>
<td>Std Dev</td>
<td>7.382412</td>
<td>Variance</td>
</tr>
<tr>
<td>Skewness</td>
<td>-1.2303</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>USS</td>
<td>5338</td>
<td>CSS</td>
</tr>
</tbody>
</table>
```
5.1. UNIVARIATE PROCEDURES

CV 23.07004 Std Mean 3.301515
T:Mean=0 9.692521 Pr>|T| 0.0006
Num ^= 0 5 Num > 0 5
M(Sign) 2.5 Pr>=|M| 0.0625
Sgn Rank 7.5 Pr>=|S| 0.0625
W:Normal 0.901126 Pr<W 0.4131

Quantiles(Def=5)
100% Max 40 99% 40
75% Q3 35 95% 40
50% Med 33 90% 40
25% Q1 32 10% 20
0% Min 20 5% 20 1% 20
Range 20
Q3-Q1 3
Mode 20

Extremes
Lowest Obs Highest Obs
20(3) 20(3)
32(4) 32(4)
33(2) 33(2)
35(5) 35(5)
40(1) 40(1)

Stem Leaf # Boxplot
4 0 1 0
3 5 1 +++++
3 23 2 *++++
2
2 0 1
--------+--------+
Multiply Stem.Leaf by 10**1

Variable=DIFF
5.2 MEANS procedure

The MEANS procedure produces simple univariate descriptive statistics for numeric variables. You can use the OUTPUT statement to request that MEANS output statistics to a SAS data set. It is the easiest and most direct descriptive procedure.

The MEANS procedure is controlled by the following statements:

```
PROC MEANS;
VAR variable-list;
FREQ variable;
WEIGHT variable;
BY variable-list;
OUTPUT SAS data set name;
```

Example: SAS program:

```
option ls=80;
DATA press;
INPUT low high;
diff=high-low;
CARDS;
70 110
75 108
```
5.3 SUMMARY PROCEDURE

90 110
80 112
95 130
;
PROC MEANS;
VAR diff low high;
run;

The SAS output is:

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF</td>
<td>5</td>
<td>32.000000</td>
<td>7.3824115</td>
<td>20.000000</td>
<td>40.000000</td>
</tr>
<tr>
<td>LOW</td>
<td>5</td>
<td>82.000000</td>
<td>10.3682207</td>
<td>70.000000</td>
<td>95.000000</td>
</tr>
<tr>
<td>HIGH</td>
<td>5</td>
<td>114.000000</td>
<td>9.0553851</td>
<td>108.000000</td>
<td>130.000000</td>
</tr>
</tbody>
</table>

5.3 SUMMARY procedure

The SUMMARY procedure computes descriptive statistics on numeric variables in a SAS data set and outputs the results to a new SAS data set. PROC SUMMARY does not produce printed output except when you specify the PRINT option. The SUMMARY procedure performs tasks similar to the MEANS procedure.

The SUMMARY procedure is controlled by the following statements:

```
PROC SUMMARY;
VAR variable-list;
FREQ variable;
WEIGHT variable;
BY variable-list;
OUTPUT SAS data set name;
```

5.4 RANK procedure

The RANK procedure computes ranks for one or more variables across the observations of a SAS data set. The ranks are output to a new SAS data set. Alternatively, PROC RANK procedures normal scores or other rank scores.

The RANK procedure is controlled by the following statements:

```
PROC RANK option;
BY variable-list;
```
RANKS new-variable-list;
VAR variable-list;

Option:

- **DATA=** names the SAS data set to be used by PROC RANK. If the **DATA=** option is omitted, the most recently created SAS data set is used.

- **DESCENDING** reverses the ranking to be from largest to smallest. The largest value is given a rank of 1, the next smallest a rank of 2, and so on. When the **DESCENDING** option is omitted, values are ranked from smallest to largest.

- **FRACTION** requests fractional ranks. The RANK procedure devides each rank by the number of observations having nonmissing values of the ranking variable and expresses the ranks as fractions.

- **NORMAL=BLOM|TUKEY|VW** requests normal scores to be computed from the ranks. The resulting variables appear normally distributed. The formulas are as follows:

 \[
 \begin{align*}
 \text{BLOM} & \quad y_i = \Phi^{-1}(r_i - 3/8)/(n + 1/4) \\
 \text{TUKEY} & \quad y_i = \Phi^{-1}(r_i - 1/3)/(n + 1/3) \\
 \text{VW} & \quad y_i = \Phi^{-1}(r_i)/(n + 1)
 \end{align*}
 \]

 where \(r_i \) is the rank of the \(i \)th observation.

- **SAVAGE** requests Savage (or exponential) scores be computed from the ranks. The scores are computed by this formula:

 \[
 y_i = \left[\sum_{j=n-r_i+1}^{n} \frac{1}{j} \right] - 1
 \]

Example: SAS program:

```sas
option ls=80;
DATA press;
INPUT low high;
diff=high-low;
CARDS;
70 110
75 108
90 110
80 112
95 130
;
PROC RANK;
```
5.5. **SORT**

VAR diff low high;
RANKS rdiff rlow rhigh;

PROC PRINT;
run;

The SAS output is:

<table>
<thead>
<tr>
<th>OBS</th>
<th>LOW</th>
<th>HIGH</th>
<th>DIFF</th>
<th>RDIFF</th>
<th>RLOW</th>
<th>RHIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>110</td>
<td>40</td>
<td>5</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>108</td>
<td>33</td>
<td>3</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>110</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>112</td>
<td>32</td>
<td>2</td>
<td>3</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>130</td>
<td>35</td>
<td>4</td>
<td>5</td>
<td>5.0</td>
</tr>
</tbody>
</table>

5.5 **SORT**

The SORT procedure sorts observation in a SAS data set by one or more variables, storing the resulting sorted observations in a new SAS data set or replacing the original data set.

The SORT procedure is controlled by the following statements:

```
PROC SORT
   BY variable-list
```

Example: SAS program:

```
option ls=80;
DATA press;
INPUT low high;
diff=high-low;
CARDS;
70 110
75 108
90 110
80 112
95 130
;
PROC SORT;
BY diff;
run;
```

The SAS output is:
Chapter 5. Basic Statistical Analysis

<table>
<thead>
<tr>
<th>OBS</th>
<th>LOW</th>
<th>HIGH</th>
<th>DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>112</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>108</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>130</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>110</td>
<td>40</td>
</tr>
</tbody>
</table>