E. Multi-Way Fixed-Effects ANOVA Model

1 Balanced Three-Way Fixed-Effects ANOVA Model

Completely crossed three-way design has row factor A at a levels, column factor B at b levels, and depth factor C at c levels where n (replicates) experimental units are assigned to each of the abc cells for a total of \(N = abc \) units. The data are denoted as \(y_{ijk\ell} \) for the \(\ell^{th} \) observation in the \((i,j,k)^{th}\) cell.

1.1 Fixed-Effects Model

\[
y_{ijk\ell} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \varepsilon_{ijk\ell} \tag{E.1}
\]

Parameters: \(\mu \) = grand mean; \(\alpha_i, \beta_j, \gamma_k \) are main effects of A, B, and C, respectively; \((\alpha\beta)_{ij}, (\alpha\gamma)_{ik}, \text{ and } (\beta\gamma)_{jk} \) are A \(\times \) B, A \(\times \) C, and B \(\times \) C two-factor interactions respectively; \((\alpha\beta\gamma)_{ijk} \) is the three-factor interaction.

Side Conditions:

(i) \(\sum_i \alpha_i = \sum_j \beta_j = \sum_k \gamma_k = 0 \).

(ii) \(\sum_i (\alpha\beta)_{ij} = \sum_k (\beta\gamma)_{jk} = 0, \forall j; \sum_j (\alpha\beta)_{ij} = \sum_k (\alpha\gamma)_{ik} = 0, \forall i; \sum_i (\alpha\gamma)_{ik} = \sum_j (\beta\gamma)_{jk} = 0, \forall k. \)

(iii) \(\sum_i (\alpha\beta\gamma)_{ijk} = 0, \forall j \forall k; \sum_j (\alpha\beta\gamma)_{ijk} = 0, \forall i \forall k; \sum_k (\alpha\beta\gamma)_{ijk} = 0, \forall i \forall j. \)

Assumptions: \(\varepsilon_{ijk\ell} \overset{i.i.d.}{\sim} N(0, \sigma^2) \). From above, the following assumptions, in descending order of importance, are required:

1. **Randomness**, and **additivity** (of model parameters).
2. **Homogeneous variances**.
3. **Normality** (of error term and hence of observations).

1.2 Sums of Squares

1. **Total Sum of Squares.**

\[
SS_T = \sum_i \sum_j \sum_k \sum_\ell (y_{ijk\ell} - \bar{y}_{...})^2 = \sum_i \sum_j \sum_k \sum_\ell y_{ijk\ell}^2 - \frac{T^2}{N}.
\]
2. Cells Sum of Squares.

\[SS_{\text{cells}} = n \sum_{i} \sum_{j} \sum_{k} (\bar{y}_{ijk} - \bar{y}_{...})^2 = \sum_{i} \sum_{j} \sum_{k} T_{ijk}^2 - \frac{T^2}{N}. \]

3. Error Sum of Squares.

\[SS_{E} = \sum_{i} \sum_{j} \sum_{k} \sum_{\ell} (y_{ijk\ell} - \bar{y}_{ijk})^2 = \sum_{i} \sum_{j} \sum_{k} \sum_{\ell} y_{ijk\ell}^2 - \sum_{i} \sum_{j} \sum_{k} T_{ijk} \frac{2}{n}. \]

4. Main-Effect Sums of Squares.

\[SS_A = bcn \sum_{i} (\bar{y}_{i...} - \bar{y}_{...})^2 = \sum_{i} T_{i...}^2 - \frac{T^2}{N}, \]

\[SS_B = acn \sum_{j} (\bar{y}_{.j..} - \bar{y}_{...})^2 = \sum_{j} T_{.j..}^2 - \frac{T^2}{N}, \]

\[SS_C = abn \sum_{k} (\bar{y}_{..k.} - \bar{y}_{...})^2 = \sum_{k} T_{..k.}^2 - \frac{T^2}{N}. \]

5. Two-Factor-Interaction Sums of Squares.

\[SS_{A \times B} = cn \sum_{i} \sum_{j} (\bar{y}_{ij..} - \bar{y}_{i...} - \bar{y}_{.j..} + \bar{y}_{...})^2 = \left(\sum_{i} \sum_{j} \frac{T_{ij..}^2}{cn} - \frac{T^2}{N} \right) - SS_A - SS_B, \]

\[SS_{A \times C} = bn \sum_{i} \sum_{k} (\bar{y}_{i.k.} - \bar{y}_{i...} - \bar{y}_{.k.} + \bar{y}_{...})^2 = \left(\sum_{i} \sum_{k} \frac{T_{i.k.}^2}{bn} - \frac{T^2}{N} \right) - SS_A - SS_C, \]

\[SS_{B \times C} = an \sum_{j} \sum_{k} (\bar{y}_{.jk.} - \bar{y}_{.j..} - \bar{y}_{..k.} + \bar{y}_{...})^2 = \left(\sum_{j} \sum_{k} \frac{T_{.jk.}^2}{an} - \frac{T^2}{N} \right) - SS_B - SS_C. \]

6. Three-factor-interaction Sum of Squares.

\[SS_{A \times B \times C} = n \sum_{i} \sum_{j} \sum_{k} (\bar{y}_{ijk} - \bar{y}_{ij.} - \bar{y}_{i.k.} - \bar{y}_{i..} - \bar{y}_{.j.} - \bar{y}_{..k.} + \bar{y}_{...})^2 = SS_{\text{cells}} - SS_A - SS_B - SS_C - SS_{A \times B} - SS_{A \times C} - SS_{B \times C}. \]

1.3 Theorems and ANOVA Table

1. \(SS_T = SS_{\text{cells}} + SS_E. \)

2. \(SS_{\text{cells}} = SS_A + SS_B + SS_C + SS_{A \times B} + SS_{A \times C} + SS_{B \times C} + SS_{A \times B \times C}. \)
3. $SS_E/\sigma^2 \sim \chi^2(abc(n - 1))$.

4. $E(\text{MS}_E) = \sigma^2$, where $\text{MS}_E = SS_E/[abc(n - 1)]$.

5. The ANOVA table:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SS_A</td>
<td>$a - 1$</td>
<td>MS_A</td>
</tr>
<tr>
<td>B</td>
<td>SS_B</td>
<td>$b - 1$</td>
<td>MS_B</td>
</tr>
<tr>
<td>C</td>
<td>SS_C</td>
<td>$c - 1$</td>
<td>MS_C</td>
</tr>
<tr>
<td>$A \times B$</td>
<td>$SS_{A\times B}$</td>
<td>$(a - 1)(b - 1)$</td>
<td>$MS_{A\times B}$</td>
</tr>
<tr>
<td>$A \times C$</td>
<td>$SS_{A\times C}$</td>
<td>$(a - 1)(c - 1)$</td>
<td>$MS_{A\times C}$</td>
</tr>
<tr>
<td>$B \times C$</td>
<td>$SS_{B\times C}$</td>
<td>$(b - 1)(c - 1)$</td>
<td>$MS_{B\times C}$</td>
</tr>
<tr>
<td>$A \times B \times C$</td>
<td>$SS_{A\times B\times C}$</td>
<td>$(a - 1)(b - 1)(c - 1)$</td>
<td>$MS_{A\times B\times C}$</td>
</tr>
<tr>
<td>Error</td>
<td>SS_E</td>
<td>$abc(n - 1)$</td>
<td>MS_E</td>
</tr>
<tr>
<td>Total</td>
<td>SS_T</td>
<td>$abcn - 1$</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Rules for the Construction of Expected Mean Squares in Fixed-Effects Models

with the following notation/configuration for a fixed-effects model

for any number of completely crossed factors A, B, C, D, \cdots at a, b, c, d, \cdots levels, respectively with n replicates at each cells.

Consider u, a combination of the symbols A, B, C, D, \cdots. For instance, $u = AC$ denotes $A \times C$ term. Now,

$$E(\text{MS}_u) = \sigma^2 + c_u k_u^2 \quad \text{(E.2)}$$

where

$$c_u = n \times \text{(product of lower-case letters of terms not in } u)$$

$$k_u^2 = \frac{\text{SS of all effects corresponding to } u}{df_u}.$$

1.4.1 Example for Three-Way Fixed-Effects Model

Factors A, B, C with a, b, c respective levels and with α, β, γ corresponding effects.

- $u = B$, $c_u = nac$, $k_u^2 = \sum_j \beta_j^2/(b - 1)$.
- $u = AC$, $c_u = nb$, $k_u^2 = \sum_i \sum_k (\alpha\gamma_{ik})^2 /[(a - 1)(c - 1)]$.
- $u = ABC$, $c_u = n$, $k_u^2 = \sum_i \sum_j \sum_k (\alpha\beta\gamma)_{ijk}^2 /[(a - 1)(b - 1)(c - 1)]$.

E.3
1.5 Recommended Analysis

Run a test on complete null hypothesis on cell means first followed by test on three-way interaction effects if cell means differ significantly. Insignificant three-way interaction effects leads to testing two-way interactions. A test on the main effects of a particular factor makes sense only if the factor is not involved in any significant interaction. Tukey-analysis of the main effects of a factor makes sense only if it’s not involved in significant interactions. Otherwise, simple-effect analysis should be conducted.

1.6 Drink Bottler Example

This example is from Montgomery. A soft drink bottler is interested in the effect of percent carbonation (A), operating pressure in the filter (B), and line speed (C) on the volume of carbonated beverage (y) packaged in each bottle. Three levels of carbonation ($a = 3$), two levels of pressure ($b = 2$), and two levels of speed ($c = 2$) are selected, and a factorial experiment with two replicates ($n = 2$) is conducted. The run order is completely randomized. The following data were collected:

<table>
<thead>
<tr>
<th>carbonation (A)</th>
<th>pressure (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25psi</td>
</tr>
<tr>
<td></td>
<td>speed (C)</td>
</tr>
<tr>
<td></td>
<td>200bpm</td>
</tr>
<tr>
<td>10%</td>
<td>7 9 9 10</td>
</tr>
<tr>
<td>12%</td>
<td>10 11 12 11</td>
</tr>
<tr>
<td>14%</td>
<td>15 14 17 16</td>
</tr>
</tbody>
</table>